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Big Data Analytics

an hour worth of data a year worth of data

> 8 orders of
magnitude

\/

millisecond events %%% subsecond events

120 samples per second -> 3.8 billion samples per stream per year -> 30 billion bytes per stream per year
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Introduction

High-precision high-sample-rate data from distributed high fidelity
SENSsors

* many sensors, a wide range of temporal scales, rare events
Finding anomalies in these systems is the holy grall

* failing to identify and react to critical events in a timely manner
may cost millions of dollars

Energy data analytics (both real-time and historical) is critical yet
computationally expensive

* the abllity to detect, analyze, and control with a limited time budget



(Goals

* Detect: identify rare events
* using an efticient search algorithm that is logarithmic in the

size of the data set and linear in the number of events that

are found

* Analyze: run compute intensive tasks on smaller chunks of
data

 (Control: take corrective/preventive actions (in real-time
applications)
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BTrDB Timeseries Database

* High throughput, fixed response-time timeseries store running
on a four-node cluster

* 53 million inserted values per second
* 119 million queried values per second
* Provides nanosecond timestamp precision

* Supports out-of-order arrivals
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Abstraction for Timeseries Data

* [Iime-partitioning version-annotated copy-on-
write K-ary tree
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Statistical Summaries

* statistical summaries (max, min, average, and
count) are stored at different temporal resolutions

years
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Example Query

Find 5-second intervals that contain at least one
value greater than a threshold
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Example Query

Find 5-second intervals that contain a value greater than a
threshold

* Query max at the given temporal resolution

o Dive down if MaXrasolution ™ threshold

* Repeat for the next temporal resolution until the desired
resolution is reached
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Multi-Resolution Search

Start with a definition of the event (search criteria)
Query statistical summaries of data at a given temporal resolution

Compare a function of these statistical summaries against a
threshold

Dive down if the condition is satisfied

Query raw data when the desired resolution is reached and run
your algorithm on a small chunk of data
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Interesting Events

voltage sags

e voltage magnitude stream

tap changing events

e angle difference stream

reverse flows

e real power or power factor stream

switching events
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Case Study: Voltage Sag Detection
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Step 1: Querying Statistical Summaries
at a Given Temporal Resolution

0.8

[2M | 2M | 2M z%zm\ oM | 2M
9.4

kernel: (mean, -min  c)/mean

statistical records: min, mean | H

16



2M | 2M

Step 2: Diving Down
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Step 3: Querying Raw Data
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Chunk size (no. points)

Evaluation

Latency of multi-resolution search
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Example Result

~

no. events runtime no. events |[runtime no. events runtime no. events runtime days

(0.05) (ms) (0.1) (ms) (0.15) (ms) (0.2) (ms)
/clean/GP_BUS1/L1MAG 9 431.77 4 237.13 0 76.78 0 88.41 135
/clean/GP_BUS1/L2MAG 10 394.39 4 226.85 1 115.30 0 70.55 135
/clean/GP_BUS1/L3MAG 5 309.07 2 163.25 1 118.95 0 77.08 135
/clean/switch_a6/L1MAG 14 666.59 6 273.01 3 194.95 1 132.75 330
/clean/switch_a6/L2MAG 21 947.24 1 523.78 4 235.44 3 190.83 330
/clean/switch_a6/L3MAG 11 608.94 4 318.44 2 213.57 0 90.06 330
/clean/RPU/CE_CERT_BId_1200/L1MAG |8 312.53 2 68.41 1 64.93 1 66.55 86
/clean/RPU/CE_CERT_BId_1200/L2MAG |12 379.19 4 163.71 3 119.51 2 112.95 86
/clean/RPU/CE_CERT_BId_1200/L3MAG |12 627.72 4 228.18 2 111.41 2 133.00 86

S
10% drop

logarithmic Iin the size of the data set and

linear in the number of events that are found
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Event Detection: A Data Driven Approach
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Takeaways

 Complexity of the search algorithm is O(nLog(L))

* |Locating and analyzing rare events among billions of
time-value pairs is possible in a fraction of a second

e Defining a kernel tunction can be quite challenging
for some detectors

 Machine learning techniques can be used to
develop sophisticated detectors
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