Modeling NASPInet Data Flows

Rakesh Bobba University of Illinois, Urbana Champaign

Joint work with Ragib Hasan and Himanshu Khurana

NASPI Working Group Meeting, Charlotte, NC. Oct 16-17, 2008. Funded by NSF through TCIP and ONR through NCASSR

- **Motivation**: How can we design and implement a scalable PMU data sharing NASPInet?
 - what kind of bandwidth is needed for NASPInet?
 - how do latency constraints affect bandwidth provisioning and security guarantees?
 - will it scale to multiple applications (current/future) using data from thousands of PMUs?
- Goal: To build a modeling framework that will analyze and validate network and storage architectures as well as security technologies suitable for PMU data sharing in a scalable manner

- Allows for extensive design space exploration for NASPInet
 - Network Architectures
 - point-to-point vs. IP multi-cast vs. publish/subscribe
 - Storage and Processing
 - distributed vs. centralized
 - Security
 - architecture dependent requirements
 - bandwidth and latency constraint

First Study: WECC Point-to-Point

- WECC topology
 - 35 PGWs
 - 1 PDC per PGW
 - 200 PMUs per PDC/PGW on average
 - 7387 PMUs in total
- Point-to-point communication links
 - 56 to 128 Kbps between PMUs and PDC
 - 6Mbps / 12Mbps between PGWs
- Standard security mechanisms
 - hop-by-hop authentications
 - MAC/signatures for authentication
- Distributed storage
 - everybody stores all data

End-To-End Latency – Dedicated Links

- Scenario
 - PGW1 248 PMUs, PGW2 193 PMUs
 - 1000 miles apart, **dedicated** comm. link
 - Authentication Scheme HMAC-SHA1
- Only 3ms increase in latency to send extra 20 bytes MAC code

	12 Mbps	12 Mbps with Authentication	7.23 / 5.72 Mbps	7.23 / 5.72 Mbps with Authentication		
PGW1 -> PGW2	85ms	88ms	98ms	101ms		
PGW2 -> PGW1	76ms	79ms	93ms	96ms		
Meets latency requirements of Class A applications!						

Average End-to-End Latency (Var. ~ 0)

- Average B/W out of a node ~ 29 Mbps
- Total B/W in the network ~ 1000Mbps simplex
- PGW1
 - has 15 outgoing links
- PGW2
 - has 7 outgoing links

Inefficient use of bandwidth when using dedicated links

End-To-End Latency – Shared Links

- Scenario
 - PGW1 248 PMUs, PGW2 193 PMUs
 - 1000 miles apart, **shared** comm. link
 - Pareto on/off traffic source adjusted to use available b/w.
 - Authentication Scheme HMAC-SHA1
- Small increase in average latency but is variable.

	12 N	lbps	12 Mbps w/ Authentication				
	(Avg./Std. Dev.)	(Min./Max)	(Avg./Std. Dev.)	(Min./Max)			
PGW1 -> PGW2	88ms / 4ms	85ms / 98ms	92ms / 6ms	88ms / 107ms			
PGW2 -> PGW1	80ms / 4ms	76ms / 88ms	85ms / 5ms	79ms / 97ms			
Meets latency requirements of Class A applications but variable latency							

End-to-End Latency

- Time Alignment at Source vs. Time Alignment at Destination
 - Advantages
 - amortizes security cost over PGW-PGW link
 - signatures come into realm of possibility!!
 - Disadvantages
 - creates more bursty traffic
 - increases latency
- Examples:
 - PGW1 -> PGW2
 - latency with time alignment 85ms
 - latency without alignment 66ms
 - PGW3 -> PGW1 (319 PMUs, 1000 mile link)
 - latency with time alignment 109ms
 - latency without time alignment 72ms

- PGW1
 - 1MB generated per second
 - 84GB per day!
 - > 1 TB every 2 weeks!!
 - 12MB total per second (recvd. + generated)
 - 1TB per day!!
- 27MB generated per second in the network!
- Need to think about storage and data management issues
 - especially if Class B, C, D applications are to be served from storage

- Analyze bandwidth requirements and feasible latency guarantees
 - using multi-hop network
 - store and forward architectures (for classes B, C & D)
- Analyze feasible security mechanisms for above cases
- Analyze trade-offs between time alignment strategy, latency and feasible security

