Interarea Model Estimation for Large-scale Electric Power Systems using Synchronized Phasor Measurements

Aranya Chakrabortty

University of Washington, Seattle

Joe H. Chow Rensselaer Polytechnic Institute, Troy, NY

Armando Salazar

Southern California Edison, Rosemead, CA

NASPI Working Group Meeting, October 17, 2008

Two-machine Equivalents

Our Approach :

IME: Method (Reactance Extrapolation)

• <u>Key idea</u> : Amplitude of voltage oscillation at any point is a function of its electrical distance from the two fixed voltage sources.

$$\tilde{V}(x) = [E_2(1-a) + E_1a\cos(\delta)] + j E_1a\sin(\delta), \quad a = \frac{x}{x_1 + x_e + x_2}$$

- Voltage magnitude : $V = |\widetilde{V}(x)| = \sqrt{c + 2E_1E_2(a a^2)\cos(\delta)}, \quad c = (1 a)^2 E_2^2 + a^2 E_1^2$
- Assume the system is initially in an equilibrium $(\delta_0, \omega_0 = 0, V_{ss})$:

$$\Delta V(x) = J(a, \delta_0) \Delta \delta$$

$$J(a,\delta_0) \coloneqq \frac{\partial V(a,\delta_0)}{\partial \delta} \bigg|_{\delta=\delta_0} = \frac{-E_1 E_2}{V(a,\delta_0)} (a-a^2) \sin(\delta_0)$$

Reactance Extrapolation

$$\Delta V(x) = \frac{-E_1 E_2}{V(a, \delta_0)} (a - a^2) \sin(\delta_0) \Delta \delta$$

Reactance Extrapolation

Reactance Extrapolation

IME: Method (Inertia Estimation)

• From linearized model

$$f_{s} = \frac{1}{2\pi} \sqrt{\frac{E_{1}E_{2}\cos(\delta_{0})\Omega}{2H(x_{e} + x_{1} + x_{2})}}$$

where f_s is the measured swing frequency and $H = \frac{H_1 H_2}{H_1 + H_2}$

• For a second equation in H_1 and H_2 , use *law of conservation of angular momentum*

- However, ω_1 and ω_2 are not available from PMU data,
- Estimate ω_1 and ω_2 from the measured frequencies ξ_1 and ξ_2 at Buses 1 and 2

IME: Method (Inertia Estimation)

• Express <u>voltage angle θ </u> as a function of δ , and differentiate wrt time to obtain a relation between the machine speeds and bus frequencies:

$$\xi_{1} = \frac{a_{1}\omega_{1} + b_{1}(\omega_{1} + \omega_{2})\cos(\delta_{1} - \delta_{2}) + c_{1}\omega_{2}}{a_{1} + 2b_{1}\cos(\delta_{1} - \delta_{2}) + c_{1}\omega_{2}}$$

$$\xi_{2} = \frac{a_{2}\omega_{1} + b_{2}(\omega_{1} + \omega_{2})\cos(\delta_{1} - \delta_{2}) + c_{2}\omega_{2}}{a_{2} + 2b_{2}\cos(\delta_{1} - \delta_{2}) + c_{2}}$$
• ξ_{1} and ξ_{2} are measured, and a_{p} b_{p} c_{i}
are known from reactance extrapolation.
• Hence, we calculate ω_{1}/ω_{2} to solve
for H_{1} and H_{2} .
• ξ_{1} and H_{2} .
• ξ_{1} and ξ_{2} are measured, and a_{p} b_{p} c_{i}
 d_{1} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{3} d_{4} d_{6} d_{6

Illustration: 2-Machine Example

- Illustrate DME on classical 2-machine model
- Disturbance is applied to the system and the response simulated in MATLAB

IME for Complex System Topologies

• Intermediate voltage support

Shunt Capacitance

Static VAr Compensation

Generator Support

Application to WECC Data 1.1 1.08 1.06 Bus Voltage (pu) 1.02 1 86.0 Bus 1 Bus 2 Midpoint 0.98 a n a 0.96 0.94 50 100 150 200 250 300 0 Time (sec) Needs processing to get usable data Colorado a d a Sudden change/jump • Oscillations New Mexico • Slowly varying steady-state (governer effects)

Conclusions

- We developed novel methods for model identification and reduction of two-area power systems to represent interarea dynamics
 - spatial variation patterns of phasor variables are exploited
- Fast sampled *dynamic phasor measurements* are used for building these tools
- Both with and without voltage support cases are considered
- Appropriate signal processing tools are developed
- The method enables better estimation of energy margins, better estimation of wave speeds, easier design of PSS, etc.

Thank You