

Oscillation Monitoring System

Mani V. Venkatasubramanian Washington State University Ritchie Carroll

Tennessee Valley Authority

NASPI Meeting, Charlotte, October 2008

TVA

Project Team

• WSU:

 Guoping Liu, Qiang Zhang, Jaime Quintero, Mani V. Venkatasubramanian

• TVA:

Ritchie Carroll, Gary Kobet, Lisa Beard, Ryan Zuo

Extensibility Module

- Measurements in...
- Perform calculation (1/30 of a second)

TVA

• Measurements out...

Oscillation Monitoring System (OMS)

 Goal of Oscillation Monitoring System (OMS)

WASHINGTON STATE

UNIVERSITY

 Early detection of poorly damped oscillations as they appear

IVA

- Trigger warning or control signals
- OMS is made possible by Wide Area PMU Measurements
 - Growing numbers of PMU's across the power grid
 - Fast algorithms available for online measurements
 - Rule based automatic analysis of PMU measurements
 - Prototype implementation at TVA

TVA

TVA Cumberland Event

Source: Gary Kobet/TVA

Motivation

- Oscillatory event at TVA:
 - Oscillations at Cumberland plant 9/18/2006
 - PMU recordings enabled the analysis
 - Local 1.2 Hz mode changed from +1.5% damping to -0.2% damping and back to +1.5% damping during the event
 - PSS installed at the plant subsequently
 - PMU based real-time alarm coded into TVA PDC as back-up measure – uses standard deviation thresholds

Cumberland Alarm

- Standard Deviation calculated in real-time from moving windows of Cumberland PMU MW data
- Alarm threshold has never been exceeded since implementation in 2007. Operator Alarm never issued.
- Concern about potential oscillations at other TVA plants or from outside TVA.
- Collaboration with WSU on the current project of implementing Oscillation Monitoring System since 2006.

Oscillation Monitoring System

- PSerc project on real-time oscillation monitoring has been on-going since 2002
- Current phase on prototype implementations at TVA and Entergy started in 2006
- Real-time code tested at TVA speed and memory requirements critical
- Focus on scalability to hundreds of PMU's from across large-scale power system

Oscillation Monitoring System

- Software Engines built into TVA PDC
- Real-time streaming data input to the engines
- Fast detection of poorly damped oscillatory modes: mode frequency, damping and mode shape
- Multiple algorithms integrated by expert system like rules
- Focus on Redundancy and Reliability

OMS Engines

• Event Monitor Engine

- Automated Prony type analysis of oscillatory ringdown responses
- Five seconds of PMU data analyzed every one second
- Damping Monitor Engine
 - Automated analysis of ambient noise data
 - Three minutes of PMU data analyzed every ten seconds

Results from Two Engines

Mode Shape – Local Mode

Mode Shape Identified by FDD at 1.224 Hz

Cumberland oscillating against rest of system – local mode

Rules for Real-time Analysis

- Crosscheck is crucial
 - Nonlinear phenomenon in the system
 - Switching events and noisy measurements
 - Bad estimate from a single algorithm
 - Unknown system dynamics
- Crosscheck the results
 - Different methods
 - Different signal groups
 - Moving window analysis results

Complementary Engines

- Event Analysis Engine
 - Three algorithms: Prony, Matrix Pencil and Hankel Total Least Square.
 - Aimed at events resulting in sudden changes in damping
- Damping Monitor Engine
 - Ambient noise based. Continuous.
 - Frequency Domain Decomposition Algorithm
 - Provides early warning on poorly damped modes

IVA

Example of results for TVA

Damping history of 1.2 Hz mode	Event Analysis	Damping Monitor	PSS Status
Sept. 18, 2006	+1.7%	+1.7%	No PSS (2U)
Dec. 16, 2006	+7.2%	No data	PSS installed (1U)
Nov. 29, 2007	+1.5%	+1.8%	PSS offline (2U)
Feb. 5, 2008	+4.0%	+3.0%	PSS offline (1U)

PSS status and effectiveness from the damping level of the local mode. *PSS not effective for two units in service*. **PSS hardware problem detected and fixed (June 2008).**

16

OMS Summary

- Successful implementation of real-time code into TVA PDC
- Automatic detection of poorly damped electromechanical modes and their mode shape
- Immense data size 30 samples a second, many minutes of data, many channels per PMU, many PMU's – *memory requirements grow quickly.*
- We are already reaching the limitations of a 32-bit architecture. 32-bit operating system have a physical limit of 2^32 = 4,294,967,296 (over 4 billion bytes, i.e. 4 GB).
- Porting code to run on a 64-bit operating system which has a theoretical limit of 2^64 = 18,446,744,073,709,551,616 (over 18 quintillion bytes, i.e. ~18 *Exa*-bytes).

Ongoing Work

- Implementation, testing and tuning at TVA
- Conversion of OMS code to 64-bit architecture
- New dedicated eight processor machine with 32-GB dynamic memory at TVA
- Parallel and efficient code using C# under development
- Expansion to other PMU's for Eastern Grid
- Determining proper enunciation of events to operator as alerts and alarms – then best course of action for operator response.