

Oscillation Monitoring System

Mani V. Venkatasubramanian

Washington State University Pullman WA

Small-Signal Stability Analysis

- Model based analysis
 - Mathematical models of dynamics
 - Solve for equilibrium from power-flow solution
 - Compute eigenvalues and damping
 - Used in planning studies
- Measurement based analysis
 - Wide-area measurements from PMU
 - Off-line and real-time analysis
 - Ambient noise algorithms and Ring-down algorithms

Oscillation Monitoring System

OMS action adapter built into OpenPDC 64 bit version 1.4 sp1. Available for beta testing.

Complementary Engines

• Event Analysis Engine

- Three algorithms: Prony, Matrix Pencil and Hankel Total Least Square.
- Aimed at events resulting in sudden changes in damping

Damping Monitor Engine

- Ambient noise based. Continuous.
- Frequency Domain Decomposition
- Provides early warning on poorly damped modes

Results from Two Engines

6

OMS Engines

- Event Monitor Engine
 - Automated Prony type analysis of oscillatory ringdown responses
 - Ten seconds of PMU data analyzed every one second
- Damping Monitor Engine
 - Automated analysis of ambient noise data
 - Five minutes of PMU data analyzed every ten seconds
 - Multiple PMUs Fast and Accurate

Nov 29 2007 TVA Event

Defective card found in Power System Stabilizer and fixed.

Mode Shape Estimation

Mode shape helps pinpoint the root cause of oscillations.

Damping Monitor Estimation Results

- Dominant modes are analyzed for each data set (every ten seconds)
- For each mode:
 - Mode frequency
 - Mode damping ratio
 - Mode energy
 - Mode shape
 - Estimation summary flag
 - Estimation confidence level

WASHINGTON STATE UNIVERSITY Western System Event

Rapid Changes in System Damping

Western System Event

Power System Prony Analysis

- Nonlinear Large Scale System
- In theory, Prony Analysis works well for analyzing "small-disturbance responses"
- Nonlinearity dominant just after large disturbances
- Switching of lines and cap banks in the middle of analysis windows
- Noise effect on results if disturbance "fades away"
- How to get reliable estimation automatically?

Rules for Real-time Prony Analysis

Three types of Consistency Crosscheck rules

- Different Curve-fitting Methods (Redundancy)
- Different Signal Groups (Superposition)
- Moving Window Analysis (Linearity of Reponses)

Event Analysis Example

- Eastern System Event 5.
- Local oscillations at a generating plant
- 1.18 Hz oscillations

Case Study 1 – Local PMU Analysis

PMU5

17

Case Study 1 – Multiple PMU Analysis

WASHINGTON STATE Case Study 2 – Western event $\cdot \circ$ 1.159 1.158 1.157 **PMU** 1.156 Marchall Voltage V **Bus** 1.155 Voltage 1.154 1.153 1.152 1.151 └─ 150 160 170 180 210 220 230 240 190 200 250 Time sec 2.5 2.5 2 **Event** 1.5 1 Damping Ratio (%) Analysis 0.5 Damping 0 **Estimate** -0.5 -1 -1.5 -2 50 180 240 160 170 190 200 210 220 230 250

Time (seconds)

Oscillation Monitoring System

OMS action adapter built into OpenPDC 64 bit version 1.4 sp1. Available for beta testing.