

Synchronized Rotor Angle Measurement of Synchronous Machines

Dr. J. De La Ree – jreelope@vt.edu David C. Mazur– <u>dmazur@vt.edu</u>

Introduction

- Torque Angle
 - Delta
 - Key Parameter
 - Stability indicator
 - Provide feedback for control of SM
- Estimated by model
- Previous Attempts
 - Provided Marginal Improvements
 - Lacked Precise Timing
 - Work done 1950s and 1960s [1-2]

Machine Theory

- Various SM models exist
 - Simple Source behind reactance
 - Seven State Variable Model (Used here)
- Blondel Two Reaction Method [3]
 - Removes time / rotor position dependencies
- At point of synchronization [3]
 - Net Flux is aligned with magnetic axis of phase A
 - Rotor Flux and Phase A Stator Flux
 - aligned and in phase

Components Using Delta

- Isosynchronous Speed Governors
 - Angle
- Exciter Systems
 Frequency (V/Hz)
- Power System
 Stabilizers (PSSs)[4]
 - Frequency

Possible Local and Wide Area Applications

Local

- Speed Governor Control
- Excitation Control
- Inter-machine oscillations

Wide Area

- Center of Angles
- Angle Coherency
- Improvements to PSSs
 Coordinated Control

Time Synchronization

- System must be referenced
 Ultimate Source of Time (GPS)
- IEEE 1588 and IEC 61588
 - Precision Time Protocol
- Construct a Time Synchronized Network
 - Used Managed Switches
 - Time Synchronization accurate to +/- 100 ns [5]
 - Master Clock GPS Receiver

Test Setup

Two Setups

Source

Data Gathering Algorithm

- Synchronized Actuation [6]
 - Send data and event prior to execution time
 - Task executes at desired time
- Functions If...
 - All devices are tied to same reference of time
 - All clocks tuned
 - Frequency and value
 - GPS master clock

Sampling Accuracy Test

- Used to test accuracy of device
- Three Tests
 - No common time source
 - GPS with varying frequency
 - GPS with constant frequency

Machinery Test Results

- Synchronous machine
 - Run as motor
 - Dynamometer provided different levels of loading
 - Results run against 7
 variable state model of synchronous
 - Machine parameters provided by manufacturer

vent the Future

Dynamometer Loading

Conclusions and FAQs

- System accurately measured rotor angle
 - Synchronized Actuation Algorithm
 - Time Synced to IEEE 1588
- Multiple loading tests performed
 - Measured results matched up with machine model theory
- Future Work
 - Provide a C37.118 word to PDC containing torque angle

References

- [1] V. A. Kinitsky, "Measurement of Rotor Displacement Angle on Synchronous Machines," *Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers,* vol. 77, pp. 349-352, 1958
- [2] D. G. Lewis and W. E. Austin, "Measurement of rotor load angle of synchronous machines," *Electronics Letters*, vol. 5, pp. 113-114, 1969.
- [3] A. E. Fitzgerald, C. Kingsley, and S. D. Umans, *Electric machinery*: McGraw-Hill, 2002
- [4] P. Kundar, *Power system stability and control*: McGraw-Hill Education (India) Pvt Ltd, 1994.
- [5] "IEC/IEEE Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (Adoption of IEEE Std 1588-2008)," *IEC 61588 First edition 2004-09; IEEE 1588*, pp. 0_1-156, 2004.
- [6] R. A. Inc., "Precision Time Protocol Over EtherNet/IP," in *Motion Over EtherNet/IP Learning Series*, R. A. Inc., Ed., ed. Milwaukee, WI: Rockwell Automation Inc., 2011.

