

Trajectory of Apparent Impedance in **Transient Stability Prediction**

Student: Meiyan Li Advisor: Arun.G Phadke

Transient stability prediction development

- 1. Traditional methods are unreliable for real-time stability prediction problems[1-2]
- 2. Real-time prediction methods such as rotor oscillation prediction based on time series require about <u>300</u> <u>milliseconds (18 cycles)</u> after the start of the transients [3].

Motivation 1: Can we have faster and more accurate real-time prediction technique?

 3. PMU are being installed in many places for transient stability assessment and enhancement

Motivation 2: Can we optimize PMU placement for transient stability prediction?

Proposal – Apparent Impedance trajectory

> A. Instability Prediction –

More complete : combine voltage and current simultaneously Fast:12 cycle (200 millisecond)

More Accurate: >90% of prediction success

B. Optimize PMU placement

Few PMU placement: <10% of the buses installed with PMU

Perpendicular plane Method[4]

Concept

Extend the method to high dimensions Algorithm –

Step 1: Change shape by LDA

Suppose two classes of observations have means $\mu_{y=r}$, $\mu_{y=b}$ and covariance $\Sigma_{y=r}$, $\Sigma_{y=b}$. The separation between these two distributions[4-6]:

$$S = \frac{\sigma_{between}^2}{\sigma_{within}^2} = \frac{(\boldsymbol{\omega} \cdot \boldsymbol{\mu}_{y=b} - \boldsymbol{\omega} \cdot \boldsymbol{\mu}_{y=r})^2}{\overrightarrow{\boldsymbol{\omega}}^T \cdot \sum_{y=b} \cdot \overrightarrow{\boldsymbol{\omega}} + \overrightarrow{\boldsymbol{\omega}}^T \cdot \sum_{y=r} \cdot \overrightarrow{\boldsymbol{\omega}}}$$

Extend the method to high dimensions
Step 2: find perpendicular plane in high dimension

$$(\hat{\mu}_{y=b_new} - \hat{\mu}_{y=r_new})^{T} \cdot (\mathbf{x} - \mathbf{ch}) = \mathbf{0}$$
 \mathbf{x}
 $\mu_{y=b_new}$
 $\hat{\mu}_{y=b_new}, \hat{\mu}_{y=r_new} = vector (24,1)$
 $-$ centroid of two new groups
 \mathbf{ch} - center of two centroid
 $\mu_{y=r_new}$
 \mathbf{ch}
Plane perpendicular to that vector given by
 $\hat{x}_1 + a_1\hat{x}_2 + a_2\hat{x}_3 + \dots + a_{23}\hat{x}_{24} = a_{24}$
 \mathbf{vector}

Extend the method to high dimensions

Step 3: calculate distance

Create fault Cases in Simulation:

Prediction success rate

Test with the IOWA system

Comparison with different nodes	89 nodes of the decision tree	8 nodes of the decision tree
ROC train	97.25%	90.34%
ROC test	95.14%	90.41%

Test with WSCC 127 buses system

Comparison with different nodes	17 nodes of the decision tree	5 nodes of the decision tree
ROC train	98.32%	97.18%
ROC test	98.22%	96.39%

Comparison of cycle numbers

WSCC 127 buses system

	10 Data point	12 Data point	18 Data point
Optimal node no.	56	36	26
ROC Train	0.9931	0.9945	0.9867
ROC Test	0.9842	0.9861	0.9858
ROC Test at 5 Nodes	0.892	0.9459	0.9489

12 Data point is accurate enough for the prediction

Summary

- 1. The high dimensional data has been integrated into one important index value.
- 2. The apparent impedance trajectory method takes about 200 milliseconds for prediction.
- 3. With the nodes of the decision tree, the critical location for PMU placement is determined.

Reference

[1] A.Liamas, J.De La Ree Lopez, L.Mili,A.G.Phadke, J.S.Thorp. "Clarifications of the BCU method for transient stability analysis" IEEE Trans. Power Syst., vol. 10, no. 1, pp. 210–216, Feb. 1995.
[2] HSIAO-DONG CHIANG, FELIX F. WU. "Foundations of the Potential Energy Boundary Surface Method for Power System Transient Stability Analysis," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 6, JUNE

[3] Francisco G. Velez Cedeno, "Multiple Swing Out-of-Step Relaying" Virginia Tech, Ph.D,2010

[4] Anamitra Pal, J. S. Thorp, Taufiquar Khan, and S. S. Young, "Classification Trees for Complex Synchrophasor Data," submitted to IEEE Transactions on Smart Grid.

[5] Ronald Fisher, "The Use of Multiple Measurements in Taxonomic Problems" In: Annals of Eugenics, 7, p. 179–188.

 [6] P. Belhumeur et al., "Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection", IEEE Transactions on Pattern Analysis and Machine Intelligenve, vol. 19, no. 7, pp. 711-720, 1997

[7] McLachlan, G. J. .Discriminant Analysis and Statistical Pattern Recognition. Wiley Inter-science.ISBN 0471691151. MR1190469.

