

NASPInet Modeling

An Exploration of Potential Realities

Tim Yardley, Rakesh Bobba, Erich Heine, Jeremy Jones, Kate Morrow (UIUC) {yardley,rbobba,eheine,jmjone,morrow4}@illinois.edu

> NASPI Working Group Meeting Feb 29 – March 1 2012 Orlando, FL

WASHINGTON STATE UNIVERSITY

NASPInet

- A robust, widely available and secure synchronized data measurement infrastructure.
- Leverages PMUs, GPS, and network infrastructure.
- Contains at least a network, a phasor gateway, and data

WHAT IS IT GOING TO LOOK LIKE WHEN IT EXISTS?

Original Vision

Hierarchical Vision

Organic Realization

- Various DOE awards are materializing "NASPInet"-like architectures e.g., SGIG awards
- No one "NASPInet"-like architecture is identical.

IS THIS A PROBLEM?

THE WORK

Prior Work

- NASPInet DNMTT work
- Analyzing NASPInet Data Flows. Hasan, R.; Bobba, R.; Khurana, H. Proceedings of the IEEE PES Power Systems Conference & Exposition (PSCE), Seattle, Washington, March 15-18, 2009.
- SGIG project implementation documents
- "Pen and Paper" planning

NASPInet Models

- PMU home-run architecture
 - Design in which the PMU's send data all the way to the entity interested in the data.
- Centralized PDC architecture
 - Design in which the PMU's send data to a centralized PDC which aggregates and sends on to other entities.
- PDC stacked architecture
 - Design in which the PMU's send data to a PDC (perhaps in a substation) which aggregates and sends data to another PDC (centralized).
- Hybrid architecture
 - Both home-run and PDC stacked (or centralized)
- We've made models of all of these.

Home-Run Architecture

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID

Centralized Architecture

Stacked PDC Architecture

Hybrid PDC Architecture

TCIPG.ORG | 14

ACTUAL MODELING

DETER

- An experimentation framework that allows you to easily
 - Configure hosts with custom software and built-in instrumentation
 - Configure network topology
 - Configure network parameters like delay, bandwidth, etc
 - Change provisioning mechanisms to emulate or provision real links leveraging external projects like GENIE
- Makes "building" networked systems easier, in the prototype phase.

DETER NASPInet Modeling

for {set n 0} {\$n < \$NASPINODES} {incr n}</pre> # PG node # PDC node # link PG to PDC set controllink(\$n) [\$ns duplex-link \$pg(\$n) \$pdc(\$n) 100Mb 1ms DropTail] # Historian node # Visualization node # Application node # control center LAN set cclan(\$n) [\$ns make-lan "\$ccstr" 100Mb 1ms] # substation fans for {set i 0} {\$i < \$SUBSTATIONS} {incr i}</pre> # substation computer for {set j 0} {\$j < \$PMUS} {incr j} # PMU set pmulan\${n}(\$lan) [\$ns make-lan "\$pmustr" 100Mb 1ms] # link substations to pdc set sublan\${n} [\$ns make-lan "\$substr" 6Mb 15ms] set naspiwan [\$ns make-lan "\$naspistr" 100Mb 20ms]

DETER NASPInet Model (representative)

Tools

• Trafficgen

- Tool for generating PMU-like traffic at specified sampling rates and number of signals
- Simple aggregation model, more complexity to follow
- Originally built for CONES, a DOE project, and continued under TCIPG
- All existing tools failed to produce streams matching the characteristics of PMUs (periodicity instead of constant bit rate)
- NASPInet Models
 - All 4 mentioned before
- Integration with DETER (finalizing soon)
 - This is what makes it easy for you!

SO WHAT?

Case Study: TVA

- Footprint
 - ~700 substations with voltage greater than 69 kV
 - Average 2 PMUs per substation (future)
 - -~1400 PMUs (future)
 - ~18 entities sharing information
- Centralized PDC architecture

Case Study: Entergy

- Footprint
 - ~1500 substations with voltage greater than 69 kV
 - Average 2 PMUs per substation (future)
 - ~3000 PMUs (future)
 - ~2 entities sharing information
- Hybrid Architecture

Case Study: WECC

- Footprint
 - ~35 entities in footprint
 - ~200 PMUs per entity (future)
 - ~7000 PMUs (future)
 - ~40 entities sharing information
- Centralized PDC architecture, many PGs

Questions

- Which architecture is best?
- How do you link them together?
- What bandwidth is needed?
- How do latency constraints affect provisioning and security?
- Will it scale from today to tomorrow?

Answers

- No one quite knows the answers yet, but tools like this framework leveraging DETER help answer that
- Available for release soon!
 - All 4 composible models, easily configured to represent your topology
 - Trafficgen (PMU traffic generation and aggregation)
- Future... stay tuned.
 - Run real PMU simulations (C37.118 streams)
 - Run OpenPDC, OpenPG, and more
 - Provision with both computers and real power equipment

See http://tcipg.org for more

YOUR QUESTIONS!

