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Swinging Door Compression

<=2 UCSD

UMIVERSITY OF CALIFORNIA

Jacobs School of Engineering

. . k=27, n=3, max error=0.013042 < 0.001
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== UCSD Contents of This Talk
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Given “swinging door” data compression technique,
consider:

= Analysis of data compression

m Investigate data “loss” for different compression
settings

@ Recommended data compression setting for
synchrophasor data
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Test Data as a Usecase
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plot of raw data used in our compression analysis
T

m Data:
m Frequency
= Sample at 30Hz

= Data has:
= Trend
= Noise
= Small jJumps
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== UCSD Test Data as a Usecase
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comparison of raw and compressed data for c=0.001

Notation: 59.99 l l l l
ne(k) =fk)-f(k) =
where f(k) = raw z 7~
f.(k) = compressed ™

raw
compressed

59.97
- 59'9650 5I 1|0 1|5 2|0 2|5 30
Observations: tme [sec]
B DeSpIte tl'end 1x10'3 error between raw and linear interpolated compressed data for ¢=0.001
le(k)|<0.001
= Due to small :
compression
level, e(k) looks
white noise o 5 10 15 20 2 30
time [sec]
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=== UCSD Test Data as a Usecase
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comparison of raw and compressed data for c=0.001 (zoomed in)

Notation: 50,985 l | l l )

= e(k) = 1(k)-Te(k)
where f(k) = raw
fc(k) — compresseQss.srs

raw
compressed

59.98 -

f [Hz]

59.97 ' I | ! I

Observations: - = S tmelsed e 15
B Desplte trend 1x10'3 error between raw and linear interpolated compressed data for c=0.001 (zoomed in)

le(k)|<0.001 ol _
= Due to small £ i

compression

level, e(k) looks 08y |

white noise al - s o " o |

time [sec]

= Effect of compression

clear in time domain: 901 points -> 196 points (21.75%)
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= UCSD Basic Analysis (1/2)
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Let {t(k), f(k)} = raw data, {t.(k), f.(k)} = compressed data, then
filk) = L{t.(k), f(k), t(k)}  ec(k) = fi(k) — f(k)
where L{t.(k), f.(k),t(k)} is linear interpolation of {t.(k), f.(k)} at t(k).

Let At be sampling time and let DFT be given by
N
Filwn) = ) fill)eonkst
k=1

Since DFT is linear operation:
g (wn) - F(wn) + Ec(wn)

where E.(w,) is DFT of e.(k). Note that
|Fl(wn)|2 — |F(wn) + Ec(wn)lz
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With F;(w,,) = F(w,,) + E.(w,,) following observations can be made:

= Fourier transform (and spectra) is influenced linearly by
compression error e.(k).

= Compression error e (k) is always bounded |e.(k)| < ¢ with
E{e.(k)} = 0 and thus E{e.%(k)} < ¢?/3 if e.(k) has uniform
distribution (however, not always uniform)

= Aliasing is bounded due to re-interpolation L{t.(k), f.(k),t(k)} of
{t.(k), f.(k)} at t(k) creating again a sampling frequency of 1/At

m If e (k) is “pure” white noise, E.(w,) is a complex number with
|Ec(wy)|= Cz/(67'[) angle{Ec(wn)} € [—m, 7]
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= UCSD Back to our Test Data as a Usecase
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CheCk if “White”: 2_5)”041 | | auto Corre!Iationfunctic!)n oferrorfc?rczo_om
2r §
= Compute auto- ol
correlation function: |
0.5
R.(T) = Efe.(K)e(k —tyy ™ 7 — "~
03,3 -15 -10 5 0 5 10 1 20
time shift 1
Result: | X 10° | | error for|c=0.001

= If indeed error e.(k) o

is white, spectrum 2 :

(periodogram)

|E.(wy,)|? = constant®|

(bUt nOISy) "o 5 10 15 20 25 30
time [sec]
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= UCSD Back to our Test Data as a Usecase
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spectrum of error between raw and interpolated compressed data for ¢=0.001

-60 | |
Result: ol T - _
= Indeed, spectrum
(periOdOgram) A0 | .............................................................. ............................................................ _
|E.(w,)|? = constant |
(but noisy) g_120 ................................................................................................................. ............................................................ _
E olEL WIE Y TRR SR LETROLA PN SR AR e el l
Conclusion: |
. _160_ ........................................................ ...................................................... ............................ -BEE I
= Spectrum for given
compression level .| T . |
where e.(k) Is
“whr_[e” noise 200, ; B |
provides base level flHz]
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=== UCSD Back to our Test Data as a Usecase
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spectrum of raw, interpolated compressed data and error for ¢=0.001

-60
Conclusion: . compressed
Compression only
Influences DFT 100
significantly when
_-120
= DFT comes close £_,|

to base level

= When e.(k) is NOT ™
a “white” noise!

-180

Hence: 200

Compression level

¢ must be chosen such that e.(k) is a white noise!
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== UCSD Back to our Test Data as a Usecase

UMIVERSITY OF CALIFORNIA., SAN DIEGO

Jacobs School of Engineering

Observe:

= Increasing
compression
level ¢

= At low levels of
c=0.001, e_.(k)
IS a white noise

= For higher levels
of c>0.001, e.(k)
IS NOT a “white”
noise anymore

f[HZz]

f[Hz]

f[Hz]

f[Hz]
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= UCSD Back to our Test Data as a Usecase
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auto correlation function of error fof ¢=0.002

Observe:

= Increasing
compression
level ¢

. 0
" C (k) s NOT > " " ° timeghiftr ° 10 1 20
a “white” noise
anymore

m Effect can also
be seen in
correlation
function
(for C:OOOZ) 2 5 10 15 20 25 30

time [sec]

error for ¢c=0.002

errorin f[HZ]
(= -
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=== UCSD Back to our Test Data as a Usecase
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@ N erro!r spectrum for compression c=o.!oo1
= Increasing j 200 : B |
compress ion 50 N e spectrum for compression c=0.!002
level ¢ % : '
= e (k) isNOT  Flul |
a “white” noise VAN error spectrum for compression ¢=0.003
anymore g |
= Effect can also £
be seen In
spectra

mag [dB]
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= UCSD Another usecase: noise free fixed sine
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comparison of raw and compressed data for c=0.001 {(compressed to 10.111%)

Effect of compression

raw

is immediately clear  *“a A A A A A A A A A A AT TSR
when signal does Esc-oosf |
not have noise: R |
Data: 59.995 - J
| | | v, W Y W VYUYV Y YVYYY Y Y
[ S|ng|e sinusoid 0 5 10 time1[55ec] 20 25 30
Wlth CO m p rESS | O n 1 x 107 error between raw and linear interpolated compressed data for c=0.001
level c=0.001
= 900 -> 91 points 5
= e.(k)is NOT £ o

a “white” noise 05- w
but periodic!

| | | |
0 5 10 15 20 25 30

m Periodic error time [sec]
signal may have
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=== UCSD Another usecase: noise free fixed sine
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comparison of spectra of raw and compressed signals

raw
compressed
error

Data:
= Single sinusoid with

&
compression m

level c=0.001
= 900 -> 91 points
m e.(k)is NOT

a “white” noise 00l

but periodic!

m Periodic error 250
signal may have
several harmonics 300,

= Spectrum hardly
Influenced at main harmonic!

S0

-150

mag [dB]

| | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f [Hz]

—_—
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=== UCSD Another usecase: noise free fixed sine
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comparison of spectra of raw and compressed signals

raw
compressed

D ata : RO .............................................................. .................. error

= Single sinusoid with
compression
Ievel C:0.00]_ Asolt M B ....................................................... .................................................... _

= 900 ->91points 5 Mt | | | | I - |

= e.(k) is NOT - \

ecgisnor — F I\ 1 i |
but periodic! R \YAWAWAY yii. . LT L _

= Periodic error " A N\

. _350_ RSP RPRTII P ..............................................
signal may have

several harmonics - ;

m Effect of harmonics

f [Hz]
In error signal can be seen in spectra!
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= UCSD Another usecase: fixed sine with noise
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comparison of raw and compressed data for c=0.001 {(compressed to 26.111%)

60.02 | | | | |
D ata . 60.01 . compressed /|
= Single sinusoid with e} |
compression .l
level c=0.001
59.98 : ! | | !
- Typlca”y data haS ’ i " time1[55ec] “ # %
some nOISG 1x10'3 error between raw and linear interpolated compressed data for ¢=0.001

= 900 -=> 235 points

= Due to noise, e (k) H
can be a “white” 0
noise, provided 09
c is picked properly. -

error in f[Hz]

|
0 5 10 15 20 25 30
time [sec]
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=== UCSD Another usecase: fixed sine with noise
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comparison of spectra of raw and compressed signals

Data: /‘\
= Single sinusoid with s¢-§

compression
level ¢c=0.001

= Typically data has
some noise

= 900 -> 235 points

= Due to noise, e (k)
can be a “White" 200k
noise, provided
C Is picked properly. 0

mag [dB]

raw
compressed
error

= Spectrum is flat again
(but noisy)

f [Hz]
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= UCSD Wrap up/Conclusions
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Main conclusions:
= Compression creates an error signal |e (k)| < c

= Compression level bounds aliasing as linear (re)interpolation
preserves sampling frequency.

Suggestions:

= Compression level ¢ must be chosen such that e.(k) is a white
noise.

= Compression level ¢ must be such that it resembles “noise
level” of sensor data.

= For typical frequency application/oscillations ¢=0.001 gives
about 20-25% compression.
H
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