

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

OSIsoft Data Compression Analysis

Raymond de Callafon Charles H. Wells

NASPI Work Group Meeting, Knoxville, TN, March 11-12, 2014

Swinging Door Compression

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Swinging Door Compression

Mechanical and

Aerospace Engineering

UCSD

Jacobs

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Callafon & Wells - NASPI meeting, March 2014

Contents of This Talk

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Given "swinging door" data compression technique, consider:

Analysis of data compression

Investigate data "loss" for different compression settings

Recommended data compression setting for synchrophasor data

Test Data as a Usecase

Mechanical and

Aerospace Engineering

Jacobs

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

₹UCSD

Test Data as a Usecase

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

6

CODE Mechanical and Aerospace Engineering

Test Data as a Usecase

Jacobs

Aerospace Engineering

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Basic Analysis (1/2)

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Let $\{t(k), f(k)\}$ = raw data, $\{t_c(k), f_c(k)\}$ = compressed data, then $f_l(k) = L\{t_c(k), f_c(k), t(k)\} \qquad e_c(k) = f_l(k) - f(k)$

where $L\{t_c(k), f_c(k), t(k)\}$ is linear interpolation of $\{t_c(k), f_c(k)\}$ at t(k).

Let Δt be sampling time and let DFT be given by

$$F_{l}(\omega_{n}) = \sum_{k=1}^{N} f_{l}(k)e^{j\omega_{n}k\Delta t}$$

Since DFT is linear operation:

 $F_l(\omega_n) = F(\omega_n) + E_c(\omega_n)$

where $E_c(\omega_n)$ is DFT of $e_c(k)$. Note that $|F_l(\omega_n)|^2 = |F(\omega_n) + E_c(\omega_n)|^2$

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

With $F_l(\omega_n) = F(\omega_n) + E_c(\omega_n)$ following observations can be made:

- Fourier transform (and spectra) is influenced linearly by compression error $e_c(k)$.
- Compression error $e_c(k)$ is always bounded $|e_c(k)| < c$ with $E\{e_c(k)\} = 0$ and thus $E\{e_c^2(k)\} < c^2/3$ if $e_c(k)$ has uniform distribution (however, not always uniform)
- Aliasing is bounded due to re-interpolation $L\{t_c(k), f_c(k), t(k)\}$ of $\{t_c(k), f_c(k)\}$ at t(k) creating again a sampling frequency of $1/\Delta t$
- If $e_c(k)$ is "pure" white noise, $E_c(\omega_n)$ is a complex number with $|E_c(\omega_n)| = c^2/(6\pi)$ angle $\{E_c(\omega_n)\} \in [-\pi, \pi]$

Back to our Test Data as a Usecase

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

UCSD | Mechanical and Jacobs | Aerospace Engineering

Back to our Test Data as a Usecase

Mechanical and

Aerospace Engineering

Jacobs

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Back to our Test Data as a Usecase

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Conclusion: Compression only influences DFT significantly when

- DFT comes close to base level
- When e_c(k) is NOT a "white" noise!

Mechanical and

Aerospace Engineering

Jacobs

Hence:

12

Compression level $f^{[Hz]}$ c must be chosen such that $e_c(k)$ is a white noise!

Callafon & Wells - NASPI meeting, March 2014

Back to our Test Data as a Usecase

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Observe:

- Increasing compression level c
- At low levels of c=0.001, e_c(k) is a white noise
- For higher levels of c>0.001, e_c(k) is NOT a "white" noise anymore

UCSD | Mechanical and Jacobs | Aerospace Engineering

Back to our Test Data as a Usecase

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Observe:

- Increasing compression level c
- e_c(k) is NOT
 a "white" noise
 anymore
- Effect can also be seen in correlation function (for c=0.002)

14

Mechanical and

Aerospace Engineering

Jacobs

Back to our Test Data as a Usecase

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Observe:

- Increasing compression level c
- e_c(k) is NOT
 a "white" noise
 anymore
- Effect can also be seen in spectra

15 Callafon & Wells - NASPI meeting, March 2014

CONTRACTOR OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Effect of compression is immediately clear when signal does not have noise:

Data:

- Single sinusoid with compression level c=0.001
- 900 -> 91 points
- e_c(k) is NOT
 a "white" noise
 but periodic!
- Periodic error signal may have
 several harmonics Callaton & Wells - NASPI meeting, March 2014

UCSD | Mechanical and Jacobs | Aerospace Engineering

UCSD Another usecase: noise free fixed sine

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

influenced at main harmonic!

Callafon & Wells - NASPI meeting, March 2014

UCSD Another usecase: noise free fixed sine

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Data:

- Single sinusoid with compression level c=0.001
- 900 -> 91 points
- e_c(k) is NOT a "white" noise but periodic!
- Periodic error signal may have several harmonics
- Effect of harmonics in error signal can be seen in spectra!

comparison of spectra of raw and compressed signals

UCSD | Mechanical and Jacobs | Aerospace Engineering

UCSD Another usecase: fixed sine with noise

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Data:

- Single sinusoid wit compression level c=0.001
- Typically data has some noise
- 900 -> 235 points
- Due to noise, e_c(k)^H can be a "white" noise, provided c is picked properly.

Mechanical and

Aerospace Engineering

Jacobs

Another usecase: fixed sine with noise

0 F CALIFORNIA, SAN DIEGO UNIVERSIT

Jacobs School of Engineering

Callafon & Wells - NASPI meeting, March 2014

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Main conclusions:

- Compression creates an error signal $|e_c(k)| < c$
- Compression level bounds aliasing as linear (re)interpolation preserves sampling frequency.

Suggestions:

- Compression level c must be chosen such that e_c(k) is a white noise.
- Compression level c must be such that it resembles "noise level" of sensor data.
- For typical frequency application/oscillations c=0.001 gives about 20-25% compression.

