

Proudly Operated by Battelle Since 1965

Introduction to Synchrophasor Technology

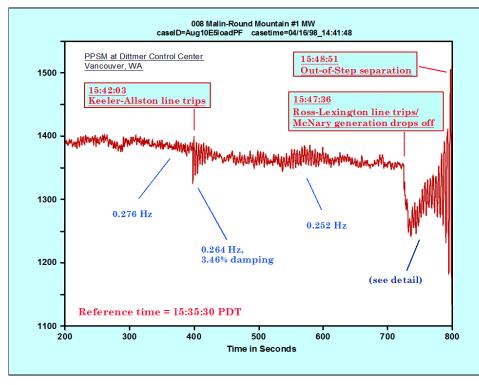
NASPI-NREL Synchrophasor Technology and Renewables Integration Workshop

June 7, 2012

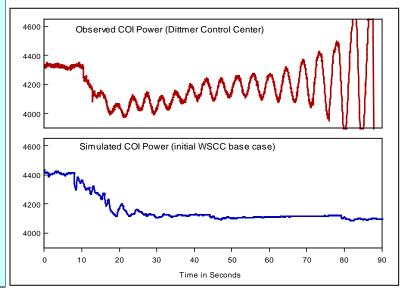
Jeff Dagle, PE Chief Electrical Engineer Advanced Power and Energy Systems Pacific Northwest National Laboratory (509) 375-3629 jeff.dagle@pnnl.gov

Data acquisition devices (continuously recording and time synchronized)

- Phasor Measurement Units (PMU)
 - Inputs from potential transformers (PT) and current transformers (CT)
- Analog signal recorders (with transducer inputs)
- Point-on-wave (POW) recorders (with PT, CT inputs)
- Controller monitors (generators, HVDC, FACTS)
 - Inputs from the controller interface or the controlled device
- Advanced relays and other Intelligent Electronic Devices (IED)
- Digital fault recorders and other sequence of events recorders

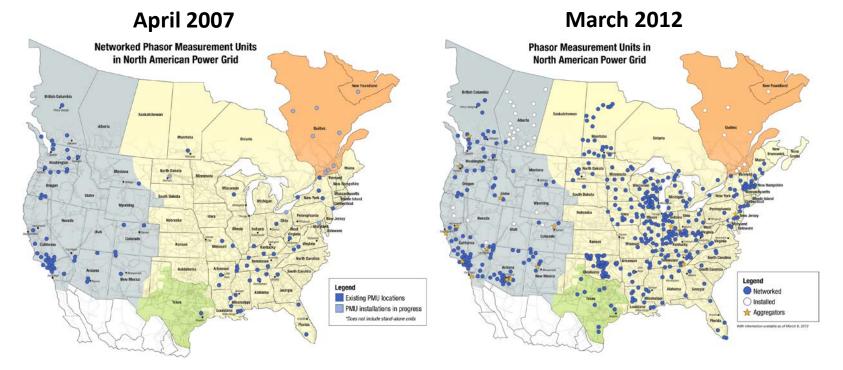

Generally **NOT** supervisory control and data acquisition (SCADA), typically a polling architecture that does not collect time-synchronized measurements (time stamps applied when the signals are logged into the energy management system at the control center)

Lessons Learned from August 10, 1996



Proudly Operated by Battelle Since 1965

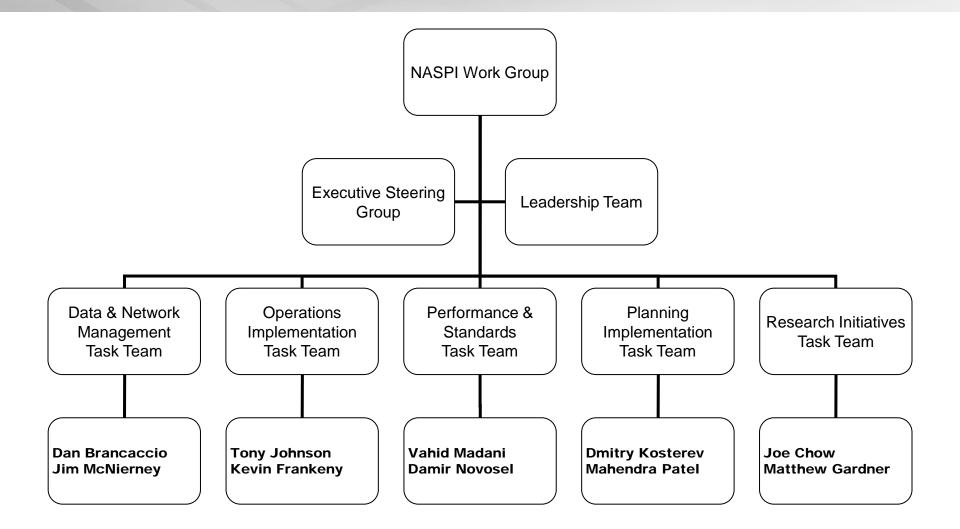
Data captured from WAMS was essential to support the blackout investigation


The need for better model validation was demonstrated

North American SynchroPhasor Initiative

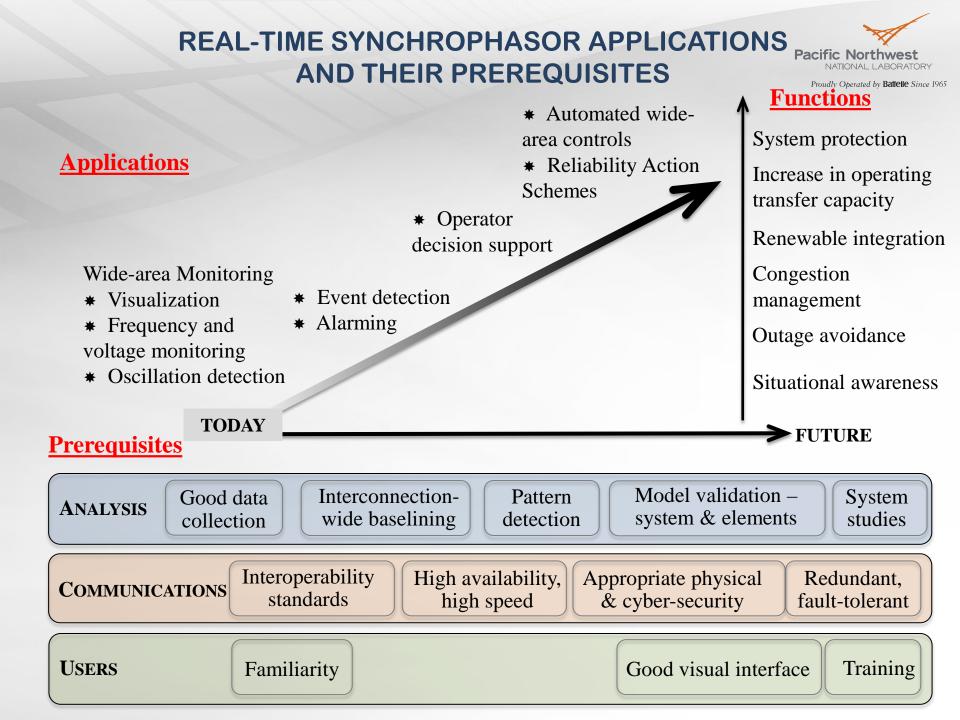
DOE and NERC are working together closely with industry to enable wide area time-synchronized measurements that will enhance the reliability of the electric power grid through improved situational awareness and other applications

"Better information supports better - and faster - decisions."



NASPI Organization

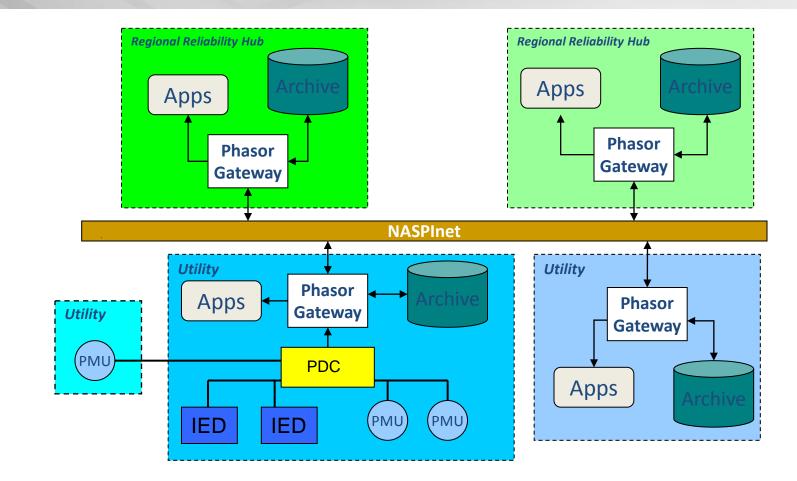
NASPI Work Group Meetings: 2009-2011



Date	Location	Meeting Themes	
February 4-5, 2009	Scottsdale, Arizona	Networking and cyber security	
June 3-4, 2009	Sacramento, California	Operations and success stories	
October 7-8, 2009	Chattanooga, Tennessee	Vendor showcase	
February 24-25, 2010	Austin, Texas	Recovery Act projects, technology specifications, intermittent generation	
June 8-9, 2010	Vancouver, Canada	International activities and baselining	
October 5-6, 2010	Arlington, Virginia	Recovery Act project updates	
February 23-24, 2011	Fort Worth, Texas	Technical standards and vendor showcase	
June 8-9, 2011	Toronto, Ontario	Success stories	
October 12-13, 2011	San Francisco, California	Recovery Act project updates	

NASPI Work Group Meetings: 2012

Date	Location	Meeting Themes	
Feb. 29-March 1, 2012	Orlando, Florida	Research initiatives and application	
		training sessions	
June 6-7, 2012	Denver, Colorado	Success stories and vendor show	
October 17-18, 2012	Atlanta, Georgia	Recovery Act project updates	


Technology Maturation Progress

- Sharing users' and vendors' success stories and high-value applications
- Accelerating development of technical interoperability standards
- Focusing and facilitating baselining and pattern recognition research (e.g., oscillation detection) and other R&D
- Early identification of project implementation challenges and community work to develop and share solutions
 - Develop and test PMU device specifications and interoperability
 - Communications network design
 - PMU placement
 - End-to-end data flow and quality
 - Developing requirements for "production-grade" systems
 - Building key software infrastructure (NERC GPA investment)
 - Enhance applications value and operator and user training
 - On the horizon more technical standards; cyber-security and GPS

The NASPInet Vision – A Distributed Network for Data Exchange and Sharing

NASPI Application Classification

Proudly Operated by Battelle Since 1965

Class	Basic Description	Sampling/ Data Rate	Required Latency
Α	Feedback Control	Fast	Fast
В	Open Loop Control	Medium	Medium
С	Visualization	Medium	Medium
D	Event Analysis	Fast	Slow
E	Research/Experimental	N/A	N/A

Security requirements are a function of the application

Security of Synchrophasors

- Synchrophasors are becoming part of the bulk electric system and will require physical and cyber security
 - But these systems shouldn't be treated any differently than other forms of measurement and control telemetry
- Synchrophasor systems will coexist with other bulk electricity system (BES) cyber infrastructure and will have similar dependencies on common communications and network elements
- System designers and owners are leveraging emerging cyber-security standards and technologies
- Currently available phasor applications require further data analysis, software refinement and operational validation to be fully effective; many are in advanced development and testing and are not in full operational use
 - Therefore, many of these systems are not currently considered critical cyber assets
- Due to nature of continuous, high-volume data flows, new technology will likely be required for measurement, communications, and applications
 - Technology anticipated to undergo rapid change and refinement over the next several years

Conclusions

- DOE has played a key catalyst role in the development and implementation of synchrophasor technology
- DOE and NERC will continue to support industry efforts to promote and enable widespread adoption of advanced monitoring technologies to ensure grid reliability
- DOE will actively support needed R&D to ensure that the full value of a North American phasor network will be realized
 - Hardware measurement technologies
 - Network -- data access and security
 - Software Applications focus on reliability management objectives
 - Demonstrations regional in scope
- Recovery Act is enabling unprecedented advancement of synchrophasor technology deployment

Proudly Operated by Battelle Since 1965

NASPI North American SynchroPhasor Initiative http://www.naspi.org/