

Synchrophasor System Deployment

Jonathan Sykes Manager, System Protection

NASPI Meeting

October 12, 2011

Before

Now

2014

2020

First PMU

Analog Displays

Standard feature (relays, DFR, controllers, equip. monitors)

On major interconnections

Improved comm. infrastructure, including control

Standard SW tools included in EMS/SCADA

Interoperability standards deployed Thousands of PMUs world-wide

Higher data rates

Also in Distribution

Fast Adaptive Protection

Integrated in standard business and operational practices

Distributed NASPI-Net type comm. architecture, fully integrated with EMS / SCADA

Synchrophasor Project Background

- PG&E has undertaken deployment of a large scale Synchrophasor measurement system to improve PG&E/WECC grid reliability
 - Sub-recipient of the ARRA Smart Grid Investment Grant (SGIG)
 - Open, Flexible, Interoperable, Secure, and Expandable
- Industry pioneering initiative to utilize advanced technology for various applications
- Proof of Concept (POC) facility plays a critical role in:
 - Risk Management No time for "Redoing" or "will figure it out later"
 - Help prevent delays at time of field installation
 - Valuable state-of-the-art test tools
 - ^D Transition from development to operation for training future users
 - ^D Fine tuning applications for functionality and performance
 - Tests so far have been:
 - A conduit to the industry standards
 - Have identified and remedied some product and system integration issues with potential for serious delays or malfunctions during commissioning

PG&E Use of the Technology

- Use by operation for better indication of grid stress to trigger corrective actions to maintain system reliability:
 - Outage reduction and blackout prevention
 - Switching, islanding and restoration
 - EMS/SE improvements
- Data Analysis
 - Engineering post-event analysis
 - Model validation
 - Fault location and type
- Looking Ahead Closed-loop control, adaptive protection
 - FACTS/HVDC enhanced controls
 - RAS/SIPS
 - Wind integration
- Market Operations
 - Congestion Management

<u>Benefits of using the same</u> <u>infrastructure for variety</u> <u>of applications</u>

Benchmarking Synchrophasor Technology Projects

X

On-going US Synchrophasor Projects

Project Highlights 1 (2)

- Install PMUs and PDCs that communicate in IEC 61850-90-5 standard and 120 phasors
 - Our team has determined more sustainable over life cycle compared to other standards
 - For support of planned and future functions, the PMUs, substation PDCs, and substation communications and data storage facilities designed to capture 120 measurements/s
- Developing application settings and procedures for use of PMU using the POC facility
 - Improved modeling and validation:
 PG&E model is integrated in
 Real-Time Digital Simulator and other tools
 - Training materials and workshops for operating personnel and other end-users of the system
 - Convey to operators a more practical view of the control center additions, creating a needed understanding of how phasor data adds to the monitoring tools they already have

Detail	Present (PG&E)	WECC DB21 (PG&E)	Merged Model (PG&E)
Substations	2,561	6,475	7,638 <mark>(2,345)</mark>
Buses	4,059	12,182	13,177
Lines	3,655	10,298	11,103 <mark>(3,290)</mark>
Units	700	2,689	2,743
Transformers	975	4,763	4,854 (775)

Situational Awareness Analysis 1 (3)

Measurements

Situational Awareness Analysis 2 (3)

Substation View Speedometers

Situational Awareness Analysis 3 (3)

Voltage Stability Analysis Nose Curve

