

Roberto Piacentini

Sr. Manager, Technology and Strategy Energy Segment - National Instruments <u>roberto.piacentini@ni.com</u>

Sushrutha Ravish

Senior Systems Engineer Energy Segment - National Instruments sushrutha.ravish@ni.com

Algorithms, Filters, Accuracy, etc. Actual Impacts of Mixing PMU Standards

"Standardization is a powerful tool to increase interchangeability and reduction of variety"

- United Nations, Industrial Development Committee

Standards Objectives

Device implementation details such as algorithms, filtering, performance, ADCs accuracy, etc. are largely left to manufacturers to decide

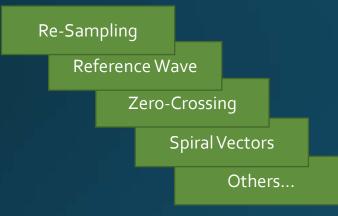
Note on C₃₇.118 Standards

Standard defined by IEEE for PMU that includes

- Measurements
- Method of quantifying measurements
- Testing & Certification requirements
- Data transmission format and protocol for communication

Available in two standards

- *C*37.118-2005
 - Most existing installations
 - Defines phasor measurement performance only under steady-state conditions
- *C*37.118-2011
 - Introduced recently, mostly required for new installations
 - Defines class M (Measurement) and P (Protection) based on performance requirements
 - Defines phasor measurement performance under both steady-state and dynamic conditions


Building blocks of a Generic PMU

PMU implementation details such as **algorithms**, filtering, performance, ADCs accuracy, etc. are largely left to manufacturers to decide

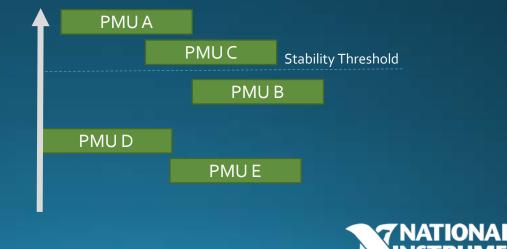
PMU Algorithm Extravaganza

There's a variety of ways to calculate phasors...

...and there's a variety of <u>different</u> results when multiple algorithms are used side-by-side

"Synchrophasor technology can help deliver better real-time tools that <u>enhance</u> system operators' <u>situational awareness</u>"

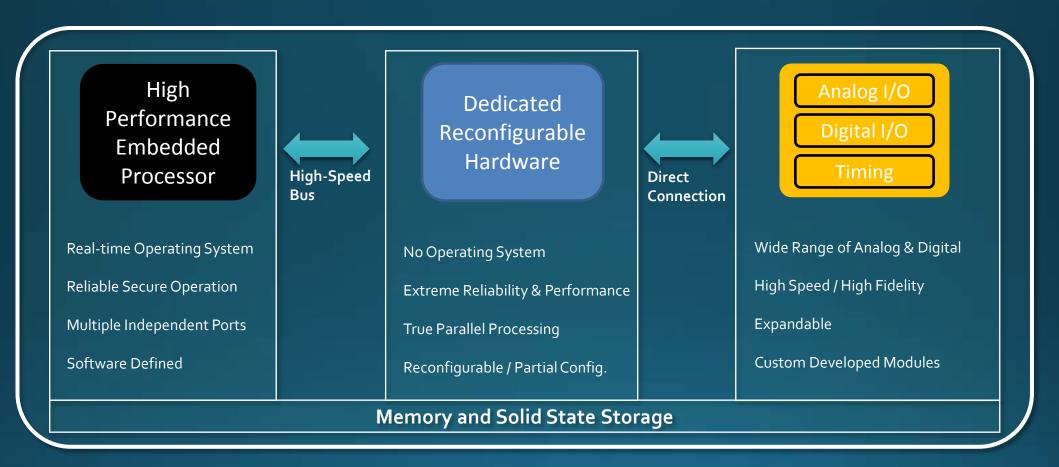
- NERC



Enhance Situation Awareness with PMUs

There's a variety of PMU Vendors...

...and there's a variety of <u>different</u> grid state estimation results when dissimilar PMUs are used side-by-side



Other Considerations

- Technology and standards are constantly evolving
- Security compliance
- Reliability (i.e. Network and GPS Vulnerabilities)
- Calibration
- Multiple logical devices on the same physical unit
- ...

A novel approach: Advanced IED Platform

Operating Temp Range -40 C to +70 C | No Moving Components | Small Form Factor

Certified to IEEE C37.90/60, IEC 60255 | Secure Remote Upgrades

Advanced IED Platform - Benefits

Distributed Intelligence

- Promotes optimum network response times and bandwidth utilization
- Allows unprecedented amounts of data and grid control operations to be seamlessly managed through the system
- Enhances reliability through decentralized coordination instead of through the imposition of hierarchical control.

Flexible communication protocols

- Facilitates instrumentation interoperability

Future-proof hardware architecture

- Real-time platform that allows capture of fast moving data such as transients and line disturbances
- High Fidelity ADCs with 24-bits and Filtering Capabilities for Quality Measurements
- Common data file formats (Standards Based)
- I/O Expandable and Remote Upgrades
- Personality Swap

Security

- Micro-Processor based infrastructure combined with modern RT OS allows advanced security schemes to comply with NERC/CIP
- VPN, Firewall, Port Blocking, Authentication, Encryption, etc.
- IP Protection (develop \Rightarrow certify \Rightarrow lock)

National Instruments Use-Case

Migrating to C37.118-2011

"To offer hardware and software development platforms for the creation of advanced substation and pole mount IEDs"

- National Instruments Vision for Smart Grid

About the Project

Customer - Power Grid Corporation of India (PGCIL)

Project - PMU Based Wide area measurement for Dynamic measurement and State Estimation of the Power Grid

Details

1750 PMU C37.118-2011 (Class M and P)
64 Servers (PDC and Hist.), 1 Central Operator Console
8 Voltages, 8 Currents, and 8 Digital Inputs
Robust Built-In GPS
Remote Upgradability

NI Advanced PMU Platform

High-Performance Hardware

Dual-Core ARM A9 RT Processor (667Mhz) and Xilinx Artix 7 FPGA

- RAM 512 Mb (DDR3), 1Gb Solid-State Storage (Expandable)
- High-Fidelity ADCs 24bits @ 50kS/s/Ch (833/1000 Samples/Cycle @ 60Hz/50Hz)
- Reporting rates up to 240 Msg/s

• Standards-Based I/O (C37.90, C37.60, IEC 60255)

- 9 Currents, 20A (continuous) , 100A (10s) | Withstand: 500A (1s) , 1250A (1/2 cycle)
- 8 Voltages, 800 VRMS L-E (continuous) | Withstand: 1000 VRMS L-E (105)
- 8 Digital Inputs with programmable thresholds, up to 250 VDC @ 1mA
- 2x RS-232, 1x RS-485, 2x Gigabit Ethernet (Fiber upgradable), 1 USB 2.0
- Built-in GPS with optional Anti-Spoofing technology (withstand attacks, or complete signal loss for up to 7 days)
- Programmable 4.3" Resistive-touch Display
- 5U | 19" Substation Rack Mountable, -4oC to 7oC

Flexible Software Framework

- LinuxRTOS
 - NI LabVIEW , Eclipse (C-Style) or IEC 61131-3
 - Support for 3rd Party Libraries and Math scripts (.m)

Hybrid Solution

- PMU C37.118.2011.a Class M and P
- Optional Power Quality (IEC 61000-4)
- Optional Protection Relay (C37.60)
- Optional Custom Algorithms
- Simultaneous Protocol Support
 - *C*37.118-2, *DNP*3, *IEC* 60870, *IEC* 61850, *Modbus*
- Security
 - Support VPN, Firewall, Port Blocking, Authentication, etc.
 - IP Protection (develop \Rightarrow certify \Rightarrow lock)
- Remote software updates, and personality "swap"

Lessons Learned

- A couple of "firsts" for National Instruments:
 - First manufacturer to deploy C37.118-2011.a PMUs to power grids
 - First PMU to pass (and outperform) tests for C37.118-2011.a compliance (Class M and P)
 - First Advanced IED Platform allowing rapid design-prototype-deploy cycles. (From PMU concept to deployment in 3 Months)
- Mixing C37.118-2005 with C37.118-2011 PMUs
 - <u>DOITATYOUR OWN RISK</u>, as they produce different measurement reports
 - May lead to ambiguous grid-health estimation
 - May filter-out real grid events or oscillations during dynamic situations
- Other
 - Customer expectations for performance were more strict than the standard
 - The software-defined instrument approach of NI Advanced IED Platform allowed quick turnaround for updating algorithms and filter schemes to meet customer expectations

"Deploying NI PMUs that meet the latest standard in our pilot program has already helped us with <u>more accurate grid health</u> <u>monitoring</u>. The quality of measurements available in these systems are <u>able to detect perturbations and grid phenomena</u> <u>that otherwise would go unseen</u>. We are excited how these new tools will help us achieve continuous improvements through innovation and state of the art technology."

- Power Grid Corporation of India (PGCIL)

Roberto Piacentini

Sr. Manager, Technology and Strategy Energy Segment - National Instruments roberto.piacentini@ni.com

Sushrutha Ravish
Senior Systems Engineer

Energy Segment - National Instruments sushrutha.ravish@ni.com

QUESTIONS

Algorithms, Filters, Accuracy, etc. Actual Impacts of Mixing PMU Standards

