A Novel Arbitrary-Resampling-Based Algorithm for Synchrophasor Measurement in Compliance with IEEE C37.118.1a - 2014

Qiao Guo, Senior Software Engineer Embedded Systems, National Instruments

Key Takeaways

- Uncertainty within the error limits in IEEE C37.118.1a 2014 based on in-house testing
 - TVE below 0.05% in steady-state tests
 - Nearly constant TVE (below 0.07%) in frequency ramp test
 - TVE below 0.25% and FE below 0.005Hz in out-of-band test
 - 29ms reporting latency for 60/60 P Class and 93ms reporting latency for 60/60 M Class
- Up to 24 measurements per cycle (up to 1200/1440 reporting rates)
- Specifically attenuate the magnitude oscillation in steadystate tests

- Challenges of being compliant with IEEE C37.118.1a -2014
- Arbitrary resampling Our approach to solve the challenges
- Final results
- Something future standard should address
- Summary

- Challenges of being compliant with IEEE C37.118.1a -2014
- Arbitrary resampling Our approach to solve the challenges
- Final results
- Something future standard should address
- Summary

Dilemma in IEEE C37.118.1

- A very narrow band-pass filter with long group delay must be applied to remove the out-of-band interfering signal
 - Much impact on the TVE/FE/RFE measurement accuracy as it is very close to the fundamental frequency
- A filtering with less group delay must be applied to meet the step test requirements and measurement reporting latency
- Removing RFE requirement of out-of-band test in amendment somewhat brings less challenges

- Challenges of being compliant with IEEE C37.118.1a 2014
- Arbitrary resampling Our approach to solve the challenges
- Final results
- Something future standard should address
- Summary

Arbitrary Resampling

- Resampling leads to the same number of samples per cycle regardless of the variable line frequency
- The same number of samples per cycle brings less spectrum leakage in order to estimate the fundamental phasor precisely
- Arbitrary resampling involves instantaneous real-time anti-aliasing filter redesign according to the variable line frequency

Resampling-Based PMU Algorithm

Different Filters for Different Reporting Rates

• Filter specification tweaks for different requirements

		Out-of-band		Modulation		Frequency ramp		Step		Letener
		TVE	FE	TVE	FE/RFE	TVE	FE/RFE	TVE	FE/RFE	Latency
Frequency Filter A	Pass-band									
	range				V					
	Pass-band									
	ripple				V					
	Stop-band									
	attenuation	v	V							
	Taps						v		v	
Phasor Filter B	Pass-band									
	range			V						
	Pass-band									
	ripple			V						
	Stop-band									
	attenuation	v								
	Taps					~		~		~

Particular Tips for both M and P Class

- Compensate the magnitude error introduced by the passband ripple of phasor filter
 - Less group delay leads to larger pass-band ripple
- Compensate the input delay of analog input acquisition module
- Disable Nagle algorithm in TCP communication

- Challenges of being compliant with IEEE C37.118.1a 2014
- Arbitrary resampling Our approach to solve the challenges
- Final results
- Something future standard should address
- Summary

Uncertainty of Nominal Value - M Class (60/60)

	TVE (%) in C37.118	TVE (%)	FE(Hz) in C37.118	FE (Hz)	RFE in C37.118	RFE (Hz/s)	
Signal frequency range/Signal magnitude/Phase angle	1	0.045	0.005	0.0004	0.1	0.03	
Harmonic distortion	1	0.06	0.025	0.0007	N.A	0.045	
Out-of-band interference	1.3	0.025	0.01	0.002	N.A	0.15	
Amplitude modulation	3	0.4	0.3	0.002	14	0.08	
Phase modulation	3	0.25	0.3	0.06	14	3	
Frequency ramp	1	0.04	0.01	8000.0	0.2	0.05	
Amplitude step test	117ms	23.3ms	233ms	75ms	233ms	108ms	
Phase step test	117ms	46.7ms	233ms	86.7ms	233ms	120ms	
	C37.118			Resampling-based M Class			
Measurement latency		117ms		92.5ms			

Uncertainty of Nominal Value - P Class (60/60)

	TVE (%) in C37.118	TVE (%)	FE(Hz) in C37.118	FE (Hz)	RFE in C37.118	RFE (Hz/s)	
Signal frequency range/Signal magnitude/Phase angle	1	0.045	0.005	0.003	0.4	0.09	
Harmonic distortion	1	0.044	0.005	0.004	0.4	0.11	
Amplitude modulation	3	0.2	0.06	0.006	2.3	0.15	
Phase modulation	3	0.12	0.06	0.006	2.3	0.7	
Frequency ramp	1	0.07	0.01	0.003	0.4	0.07	
Amplitude step test	33ms	10ms	75ms	38.3ms	100ms	55ms	
Phase step test	33ms	11.7	75ms	41.7ms	100ms	58.3ms	
	C37.118			Resampling-based P Class			
Measurement latency		33.3ms		29ms			

- Challenges of being compliant with IEEE C37.118.1a 2014
- Arbitrary resampling Our approach to solve the challenges
- Final results
- Something future standard should address
- Summary

Magnitude Oscillation

- Magnitude oscillation could be unacceptable in the field although the TVE is within the standard requirement
 - Around 1000V magnitude oscillation on the primary side although TVE is 0.8%

Magnitude Oscillation Deep Dive

 The oscillation frequency corresponds to 2*(instantaneous frequency – nominal frequency)

- Large attenuation in this specific frequency is necessary
 - Integer-cycle averaging is one option

Misleading DFREQ Definition

 The DFREQ should only be multiplied by 100 for 16-bit INTEGER data

FREQ	2/4	Frequency deviation from nominal, in mHz					
		Range-nominal (50 Hz or 60 Hz) -32.767 to +32.767 Hz					
		6-bit integer or 32-bit floating point					
		16-bit integer: 16-bit signed integers, range -32 767 to +32 767					
		32-bit floating point: actual frequency value in IEEE floating-point format.					
		Data type indicated by the FORMAT field in configuration 1, 2, and 3 frames					
DFREQ	2/4	ROCOF, in hertz per second times 100					
		Range -327.67 to +327.67 Hz per second					
		Can be 16-bit integer or IEEE floating point, same as FREQ above. Data type indicated					
		by the FORMAT field in configuration 1, 2, and 3 frames					

Summary

- Uncertainty within the error limit in IEEE C37.118.1a -2014
 - TVE below 0.05% in steady-state tests
 - Nearly constant TVE (below 0.07%) in frequency ramp test
 - TVE below 0.25% and FE below 0.005Hz in out-of-band test
 - 29ms reporting latency for 60/60 P Class and 93ms reporting latency for 60/60 M Class
- Up to 24 measurements per cycle (1200/1440 reporting rates)
- Future PMU standard may need to define the magnitude oscillation requirement and restate the DFREQ definition

