Synchrophasor Implementations

Prepared by Tony Weekes Husam Al Hadidi Brian Archer

Topics of Discussion

- Description of Manitoba WAMS
- Introduction to Birchtree SVC Project
- Commissioning Results
- Lessons Learned and Future Road Map

Organization	PDC		PMU	
	Contracted	Connected	Confirmed Sites	Connected Devices
Ameren	1	1	21	6
American Trans Co.	N/A	1	N/A	5
Duke Energy	1	1	16	4
Great Rivers Energy	1	1	8	2
Hoosier Energy	1	1	7	9
Indianapolis P&L	1	1	6	7
International Trans Co.	1	1	12	5
Manitoba Hydro	2	1	22	6
MidAmerican Energy	1	0	12	0
Minnesota Power	1	1	4	1
Montana Dakota Utilities	0	0	5	0
Northern Indiana Public Service	3	1	8	2
Ottertail Power	2	1	6	3
Vectren	1	0	3	0
WAPA	0	0	4	0
XCEL Energy	0	0	11	0
TOTAL	16	11	145	50

Need for wide Area

Measurements

- Typical PSS tuning monitors local signals
- Problems can arise with fighting between controllers
- Advantage of monitoring a wide area can be addressed with synchrophasors

WAMS

 Phasorpoint tool used primarily to see the modes on the system

Phasor Point

Mode Charting

Mode Power Path

Sites Chosen

- known inter-area modes in our Northern ac.
- sensitivities of modes to various power flow conditions
- Upcoming projects in Northern ac
- Future sites will increase from 6 to 30 PMU locations
- Using existing TFR devices

Birchtree SVC Controller

Power Oscillation Damper (POD)

Commissioning Objectives

- <u>Transfer function verification</u> of the SVC voltage and POD controllers
- <u>Tuning the POD</u> to provide good damping performance for the modes within the frequency range of interest 0.5 to 0.9 Hz
- <u>Minimize the interaction</u> between the Ponton SVC and Birchtree SVC
- <u>Optimize the Birchtree SVC POD and Ponton SVC</u> <u>SDC settings</u> for most northern ac system generation patterns and operating conditions

Risks and Mitigations

- Output is correctly controlled from input, as expected
- Check the degree of movement in the rest of the system in response to a step change
- Confirm consistency with time-domain measurements
- Decide criteria for "unacceptable" oscillations.
- Switch controllers off one-by-one or plant-by-plant, separated by a period of time.

System Frequency Response

Model verification (frequency response) of SVC POD design

The frequency response characteristic (magnitude and phase) of the transfer function between Birchtree SVC input and voltage angle (frequency

Manitoba

Hydro

Mode Trending

Root locus of mode

• Trending and verification of damping controller performance

Observability of the mode over time

Histogram (PDX2-20)

Unexpected Results Captured

- Mode increases with lower power
- Initial response of POD with other settings
- Clock error

Cont....System Baselining

Cont....System Baselining

April 25, 2011 - 11:14:00 to 11:19:00 - Approx. 2 hours before event

Clock Errors

Cont....System Baselining

May 25, 2011

POD First Settings

POD Second Settings

Open/Close line test

Open/Close Line Test

Open/Close Line Test

SLG Fault

Lessons Learned

- **Channel Selection** (problem with power calculation if switching occurs)
- Importance of doing a frequency response initially to confirm models
- **Real time feedback** to see if and how multiple power system controllers may fight with each other.
- Clock errors can be significant and need mitigation measures both in real time and regular maintenance
- Integration of analog signals in the future to PMU data (also significance of proper channel selection and sites)
- Unusual Modes were identified as consistently observed on the system but low in magnitude

Future Road Map

- Model verification (complement NERC testing)
- Investigations to increase transfer limits through compound event analysis
- Investigation of islanding and coherency of generators
- Integration with real time tools that use power models (benchmarking)
- EMS state estimator improvement especially after the full complement of PMUs are on the system

Questions ??

