

PMU Time Source Security Erich Heine <eheine@illinois.edu> Information Trust Institute

Authors: Erich Heine, Tim Yardley, Dr. Alejandro Dominguez-Garcia, Daniel Chen

Washington State UNIVERSITY

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID

Overview

- PMU time synchronization and it's vulnerabilities
- TCIPG work in:
 - GPS spoofing
 - Bad Data Detection for PMU Measurements
 - Testbed tools for understanding time attacks
- Future directions and concerns on this topic

Background: PMU Synchronized Data

- PMUs report data at time t₀
- Data delivered to dependent systems
 - PMUs send data via IP network to PDC
 - PDC sends collated (time aligned) data to other systems
- Time synchronized data used in:
 - Wide Area Monitoring Systems
 - System Visualization
 - Enhanced State Estimation
 - Event analysis

Time Synchronization Considerations

- Data delivery over IP networks takes a non-deterministic amount of time
 - Time alignment must happen somewhere (usually PDC)
 - Necessitates a data arrival window (t_w)
 - Late data is dropped or only used in historical contexts (e.g. post event analysis)
- Clock accuracy considerations
 - Real world means tolerances, in the case of PMUs +/- 1us
 - Synchronized accurate clocks are expensive so use a common external source

Background: Consequences Inaccurate Time

- A PMU reports data based on its understanding of the time
- Inaccurate time on a single PMU will result in:
 - Incorrect point on wave values
 - Incorrect computed relationships between point in the system
 - Data discrepancies which are difficult to trace
- Broader consequences can include:
 - False alarms to operators
 - Incorrect control actions
 - Slower event response times

Attack Surface Analysis

- Can a time source be compromised? Yes:
 - GPS spoofing
 - Network attacks spoofing or breaking time daemons
- What constraints does a time attack have? (How much can my clock be offset without detection via side-effect?)
 - Maximum window defined by:

 $(t_0 + t_w) - t_d$

- (t_d is the time it takes most packets to transit PMU->PDC)
- Time must not offset reported values past target system sanity check thresholds.

Attack Surface Analysis Cont.'d

- What protections already exist?
 - Most time protocols have provisions for sudden time changes (PMUs may or may not report this)
 - Some spoofing may be catchable with advanced error correction in receivers
 - Advanced network monitoring may catch packets from a PMU being consistently late as an odd network latency
- Overall assessment: potentially exploitable vulnerabilities exist.

TCIPG Work to Address This

- Overview of TCIPG work on Time Source Security
- GPS spoofing
- Bad Data Detection for PMU Measurements
- Testbed tools for studying and understanding Time Source Security
- Work with industry towards a more resilient timesynchronization framework.

GPS Spoofing

- Researchers
 - Dr. Alejandro Dominguez-Garcia
 - Xichen Jiang
 - Brian Harding
 - Dr. Jonathan Makela
- Summary:

It is possible to spoof GPS signals such that receivers report a nearly correct position but incorrect time.

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID

GPS Spoofing Cont.'d

- How GPS works:
 - Receiver monitors signals broadcast from n >= 4 satellites
 - Signals contain:
 - Time information
 - Satellite location and motion information (known as: ephemerides)
 - Receivers compute time and location:
 - Comparing satellite location and transmission time against an internal reference clock
 - Iterating over the n signals to account for reference clock biases and errors

GPS Spoofing Cont.'d

- The attack:
 - Broadcast a GPS signal from a spoofing device
 - Gradually overpower GPS signals
 - Receiver locks to spoofed signal rather than the satellite being spoofed
 - Signal modifications
 - Changes to ephemerides
 - -Must be within a defined range
 - Must result in receiver calculated location within a bound
 - Chosen to maximize offset used to correct for receiver reference clock bias.

GPS Spoofing cont'd

- Experiments
 - Attack simulated in Matlab
 - Small ephemerides change bounds to prevent detection*
 - 15m bound on computed location.
- Results:

 Able to achieve a maximum 52° phase shift in a particular PMU with 4 satellites visible, ephemerides bound to within 2% of original values, and receiver computing a location within 15m of previously computed location.

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID

GPS spoofing countermeasures and mitigation

- Receivers instrumented to handle sudden changes to ephemerides data
- Multiple antenna setups to verify signal angle of arrival
- Comparison of ephemerides data against external source (e.g. the internet)
- Extra signal processing to search for the original signal as well as the spoofed signal.

GPS Spoofing related and future work

- TCIPG researchers implementing spoofing algorithm using a commercial GPS spoofing device for testing real receivers
- UT-Austin researchers have been testing GPS receivers and PMUs against various GPS spoofing attacks

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID

Bad Data Detection for PMU Measurements

- Researchers
 - Daniel Chen
 - Jiangmeng Zhang
 - Dr. Zbigniew Kalbarczyk
- Summary

Using data available from SCADA systems and other PMUs, straightforward detection of bad angles from PMUs is demonstrable.

Bad Data Detection for PMU Measurements cont.'d

- Problem description
 - A PMU is reporting an incorrect (bad) angle, potentially as a result from a time source attack
 - SCADA measurements not affected
 - Assume time source attacks can only be carried out against a subset of measurements
 - Targeted GPS spoofing
 - Time server for a single substation or utility

Bad Data Detection for PMU Measurements Cont.'d

• Approach

- Use available redundant data from
 - Other PMUs
 - SCADA system
- Use traditional state estimation to provide a baseline estimated angle
- Use the baseline and gathered measurements in a chisquared test to determine bad or potentially bad data points

Bad Data Detection for PMU Measurements Cont.'d

- Experimental Setup in TCIPG testbed
 - RTDS simulation
 - Provided SCADA values
 - Drove PMUs
 - Inline angle data modifier
 - Custom adaptor for OpenPDC to modify one PMU's reported angle as in a time source attack
 - Implementation of State-estimation and Chi-squared detection algorithm

Bad Data Detection for PMU Measurements Cont.'d

- Results
 - Able to detect bad measurement and identify offending PMU
 - Use of the testbed helped rapidly iterate algorithm improvements, find bugs, etc.
 - Hardware in the loop allows us to extend this form of experimentation to real devices experiencing real spoofing (future work)

- Researchers
 - Erich Heine
 - Nathan Edwards
 - Jeremy Jones
 - Tim Yardley
 - Dr. Alejandro Dominguez-Garcia
- Summary

Direct testing the effects of time source spoofing can cause problems so create tools and devices to emulate it.

- Overview
 - Direct GPS spoofing outside of an isolated room is can affect legitimate devices and cause problems
 - Fully emulated or isolated time source environments are expensive and difficult to properly calibrate
 - Emulated or simulated PMU streams don't allow for device testing or easy verification

- Approach
 - Create devices and software to modify legitimate inputs to real time sources.
 - Focus on techniques that modify signals on wires rather than broadcast radio signals
 - Flexible use tools for broad range of experimental setup and reusability

- Example: GPS spoofing
 - Uses a relatively inexpensive GPS signal spoofer
 - Output feeds directly into antenna feed of GPS clock
 - Implements the GPS spoofing work outlined above
 - Multiple GPS clocks in the TCIPG lab allow for some spoofed some un-spoofed signals.

- Example: IRIG-B signal delay
 - IRIG-B is a simple 1KHz amplitude modulated digital signal.
 - Time synch comes from PPS over phase locked loop
 - Signal from clock delayed by a series of op-amp phase shifters
 - Delay controllable by interfacing a computer to the board and digital potentiometers.

Future Directions for TCIPG

- Detection of time source attacks
- Further testbed integration of tools
- Investigation of secure time source techniques
- Integrate research to improve time synchronization for a more resilient power grid.

Questions?

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID