Overview of Synchrophasor Applications

Dmitry Kosterev Bonneville Power Administration

Recognition of the Synchrophasor Technology at the World-Wide Stage:

BPA synchrophasorproject received2013 Platt's GlobalEnergy Award forGrid Optimization

PMU Installations

- PMU installations and system design are driven by requirements of planned applications
- Stand alone or relay upgrade ?
- Redundancy ?
- PMU status monitoring ?
- Critical Cyber Asset ?

 Measurements: voltage and current phasors, active and reactive power, ABC phase values, digital status

Typical Control Room Architecture

Western Interconnection Sycnhrophasor Program

Overview of Applications

- Event Analysis
- Model Validation
- Frequency Response Analysis
- Frequency Disturbance Detection
- Islanding Detection
- Oscillation Detection and Mode Meter
- Voltage Stability
- State Estimation
- Equipment Malfunction
- Development Pipeline

Event Analysis

Event Analysis

- Maturity: 9/10
- Event Analysis is the most mature application of the synchropahsor technology since mid 1990s
- Synchronized-wide-area PMU data is used to time-align events to correctly determine sequence of events, their causes and effects
- NERC PRC-002 Reliability Standard (out for ballot) sets placement requirements for disturbance monitoring devices
 - Regional entities (e.g. WECC) have their own guidelines in place

September 8, 2011 Pacific Southwest Outage

- Disturbance evolved over about 11 minutes
- There were several phases of multiple switching actions
- Timing of events reported by utilities was different, a few by several minutes

- Time-synchronized data from three PMUs was used to align switching events precisely in about 2 hours versus months
- PMU data was also essential for model validation studies to simulate the event in time sequence power flow and transient stability programs

Trending Real-Time Data

Trend Displays

- "A good trend is your friend"
- Trend displays provide "pulse" on the system state
- A good trend display supports decision-making
 - the goal is to help operate the system, and not to amuse
 - customization is often required to align with operating procedures
- A good trend display needs to include:
 - High-resolution synchrophasor trends
 - Long-term SCADA trends and respective operating limits
 - Results of analytical applications
- An example is on next page...

SCADA data path flows and limits (2 hour window, 2-second update)

OSI Soft PI Process Book display is shown above SEL Synchrowave, EPG RTDMS, Alstom Phasorpoint, Space Time Insight have trending apps, a number of utilities developed their own displays

• Maturity: 8/10

- Users: transmission planners, generator owners
- in use at BPA in various forms since 2000, programmatic since 2009
- Currently works with GE PSLF
- PSS[®]E and TSAT are adding same capabilities
- PPMV Application has been used:
 - compliance with NERC MOD -026/27 Standards
 - determination of power plant operating practices
 - Identifying model inaccuracies even after stage testing was done
 - detection of generator control failures
- PPMV can produce disturbance performance reports for the entire generating fleet (monitored by PMUs)

- Periodic validation is required by NERC MOD-026,-027 Reliability Standards
- Cost-effective alternative to staged tests (assuming a good baseline model exists)
- PMUs allow more frequent model validation, becomes a clinical tool in detecting control abnormalities
- Make PMU/DDR installation a part of youe generation interconnection requirements (visit <u>www.naspi.org</u> for typical language)

Using PMU Data for Model Validation

Disturbance play-in capabilities are added to GE PSLF in 2001

• What a good models looks like:

Voltage and frequency are inputs Active and reactive power are "measures of success"

Blue line = actual recording Red line = model

• What a **bad** model looks like:

Voltage and frequency are inputs Active and reactive power are "measures of success"

Blue line = actual recording Red line = model

Model Calibration

Can PMU data be used for model calibration ?

Blue = Actual, Red = Model

- Yes, PMUs can *complement* model development, there are successful case studies – engineering expertise and knowledge of generator controls is essential
- But, beware of curve fitting exercises

Model Calibration

- EPRI Power Plant Parameter Derivation (PPPD) is most mature, a user group is established including 23 participants
- Bernie Lesieutre @ University of Wisconsin uses a unique approach of pattern matching – which is useful to provide insight in model inaccuracies
- Others:
 - MATLAB
 - University of Texas Particle Swarm Optimization
 - PNNL Kalman filter
 - Georgia Tech super-calibrator
 - Idaho Power developed in-house optimizers

- Power Plant Model Validation (PPMV) application
 - works with GE PSLF
 - PTI PSS[®]E functionality is being added
- Data and model management layer is added as a stand-alone program (PNNL)
- Model validation reports for 20 GW of BPA generating fleet are produced within minutes
- Working on expanding to wind and solar plant validation (need point-on-wave data)

Detecting Abnormal Control Behavior

 Once a good model is established, PPMV becomes a clinical tool for detecting control abnormalities

Detecting Abnormal Control Behavior

... and control failures

Load Modeling

Load Modeling

- Load plays greater role in system stability
- Load modeling efforts are under way to develop and implement composite load model

- Model validation efforts are essential
- Positive sequence data is not sufficient, point-onwave disturbance recordings are needed
 - Micro-PMU project
 - Extended triggering is feasible at PMU used by BPA

System Model Validation

System Model Validation

- Periodic verification of system models is required by MOD-033 Reliability Standards
- PMU data of system frequency, voltages, path flows is essential for credible model validation
- In the West, there is a long history of system model validation, on 1 to 2 system model validation studies are done each year

System Model Validation

FREQUENCY

ACTIVE POWER

Frequency Response Analysis

Frequency Response

FERC defines in RM13-11:

"Frequency response is a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, and is a *critical component of the reliable operation* of the Bulk-Power System, particularly during disturbances and recoveries."

Frequency Response

- NERC BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard is approved
- No loss of load is permitted for resource contingencies:

Table 11: Recommended Resource Contingency Protection Criteria					
Interconnection	Resource Contingency	Basis	MW		
Eastern	Largest Resource Event in Last 10 Years	August 4, 2007 Disturbance	4,500		
Western	Largest N-2 Event	2 Palo Verde Units	2,740 ⁴⁶		
ERCOT	Largest N-2 Event	2 South Texas Project Units	2,750 ⁴⁷		

NERC BAL-003-1

- Interconnection Frequency Response Obligation is calculated in MW per 0.1 Hz at settling frequency (point B)
- IFRO is prorated among Balancing Authorities (BAs) based on annual load and generation
- BAs are responsible for providing frequency response,
 - BA FRM is measured as change in BA interchange over the delta frequency between initial and settling values
- Formation of Reserve Sharing Groups is permitted

BPA – PNNL Frequency Response Analysis Application

Database of Events

Add / View / Edit Events

DataBase	2		Event Characteristics	
nt Name	Date Time Disturban	ce FRM NERC FRM B4	Event Description	
	06/14/14 11:22:00 765	1443 396 277.004		- CHIE
	06/06/14 03:37:00 725	966.667 265.753		- CH/5
	05/26/14 17:31 2806	1558.889 325.298	Date 4/29/2014 Time 5:23:00	f90
	05/16/14 23:18 2673	1468.681 365.893	Day Tuesday	
	04/29/14 5:23:00 740	1156.25 311.887	Distubance Si 740	
	04/21/14 10:41:00 1039	1180.682 746.58		
	04/15/14 5:46:00 810	1191.176 278.46	Qualifying [Comments 60 80 100 120 140	160
	04/15/14 14:43:00 1430	1247.4593 0	✓ Load/Generation	
	04/09/14 17:33:00 800	1212.121 297.803	Time/Frequency	
	02/27/14 8:54:00 877	1252.857 268.494		RCHANGE
	02/21/14 10:14:00 938	1250.667 263.555		RCHANGE_AC
	01/29/14 6:47:00 2626	1377.581 0	Additional Performance Indexes	
	01/29/14 7:03:00 1940	1221.4086 0	ž – – – – – – – – – – – – – – – – – – –	
	12/02/13 16:59:00 1344	1429.787 312.598	Act	
	08/04/13 0:59:00 682	1100.1749 0		
	08/03/13 2:51:00 800	1110.0315 0	60 80 100 120 140	160
	08/03/13 20:46:00 850	2263.7289 0	100.5	
	07/25/13 13:52:00 1000	1472.2583 0		
	07/25/13 10:50:00 1150	1630.1178 0	Baseline Plot	
	07/10/13 9:50:00 1130	1350.9369 0	Baseline Plot	
	06/29/13 3:50:00 1534	1411.5335 0		
	05/30/13 15:59:00 2895	1678.0613 0		
	05/22/13 15:21:00 1200	1473.9372 0	2000 -	
	05/07/13 10:37:00 719	828.4502 0	¥	
	04/01/13 8:08:00 1400	1579.5155 0		
	03/31/13 18:05:00 850	1/70.9932 0		
	03/14/13 17:14:00 730	1527.4759 0		A 5014
	12/09/12 19:05:00 760	1407.8294 0		FRM_
	10/11/12 12:09:00 1125	1061.041 0	â 1000 -	-
	07/22/12 5:26:00 000	2912 2052 0		
	07/04/12 7:20:40 1712	1586.0139.0		
	06/28/12 8:40:40 877	1777 4292 0	2	
	06/25/12 9:30:00 977	1331 739 0		
	00/25/12 9:50:00 929	1331./39 0		
	05/14/12 10:02:00 1195	1663 1818 0		_

Performance Baseline

BA Frequency Response Measure Calculation

 $BA FRM = (PINT_B - PINT_A + BA GEN LOSS) / (FA - FB)$ ³⁴

Western Interconnection Performance

WECC IFRO is about 950 MW per 0.1 Hz, system performance is about 1,440 MW per 0.1 Hz

Balancing Authority Performance

Interchange response is measured for compliance with NERC BAL-003-1 Generation response is calculated to determine how much frequency response to acquire

Frequency Response Analysis Tool

- Maturity: 6 /10
 - Users: Balancing Authorities, Reliability Coordinators
- Frequency Response Analysis Tool (FRAT):
- What is does now
 - Has been used in WECC for interconnection-wide frequency response analysis since 2012
 - BA frequency response analysis is added in 2014
- Work in Progress
 - Produce NERC FRS 1 and 2 Forms
 - Power plant response analysis is under development
 - Power pick-up on transmission paths is under development

Basic Frequency Triggers

- Maturity: **7/10**
- Users: dispatchers, operating and planning engineers
- FNET
- BPA FDM
 - Identify origin of frequency event by the propagation of "frequency wave"
 - Triggers on frequency deviation, ranks PMUs based on frequency deviation and its rate of change
 - Future development:
 - Add power pick-up on major paths

Reconnection of Alberta to WECC

Islanding of Alberta

Islanding Detection

Island Detection

Phase Angle Differences

Islanding Detection

- Maturity: **7/10**
- Users: dispatchers, operating engineers
- The application could be very useful during system restoration from outages caused by natural disasters
- The value of using PMUs for island detection during hurricane Katrina is well documented by Floyd Galvin at Entergy

- Maturity: **8/10**
- Users: dispatchers, operating and planning engineers
- Scans power plants, interties, HVDC and SVCs for growing or sustained high energy oscillations
- Developed by Dan Trundowski at Montana Tech
- Operational at BPA since October 1, 2013, alarms dispatchers
- Dispatcher training is performed
- A number of events has been detected

Oscillation Detection – Wind Power Plant

Oscillation Detection – Wind Power Plant

BEFORE

Mode Meter

Mode Meter

- Maturity: **5/10**
- Users: dispatchers, operating and planning engineers
- Pro-active: estimates damping of inter-area power oscillations from ambient data
- Developed by Dan Trundowski at Montana Tech, University of Wyoming, PNNL
- Implemented, under evaluation
- Operating procedures are under development

Voltage Stability

Voltage Stability Situational Awareness

Voltage Stability Situational Awareness

Measurements tell where you are, measurements do not tell you where the edge is You need a model to estimate where the edge is

- Full-topology voltage stability solutions (for wide-area voltage stability)
 - V&R ROSE uses state estimator model for voltage stability analysis, PMU data is used between snapshots
 - Implemented at New England ISO
 - Evaluated at Peak RC

Voltage Stability Situational Awareness

- Reduced topology voltage stability solutions
 - Renesaller Polytechnic Institute
 - Evaluated at BPA and SCE
- Thevenin Equivalent
 - ABB VIP, EPRI VIP, Quanta/Alstom Grid RVII
 - Application is limited to simple radial systems
- PV-Slope Sensitivity
 - Electric Power Group
 - Lagging indicator
- Reactive Reserves

State Estimator

State Estimator

- Leading state estimators can take phasor measurements as inputs
- Peak RC and BPA integrated phasor measurements in Alstom Grid state estimator
- Linear State Estimators
 - Used for line parameter verification at Dominion
 - Used for data calibration
 - WECC-funded work at EPG

Equipment Mis-Opertaion

Equipment Mis-operation and Control Failures

- US DOE Paper on using PMUs for detecting equipment mis-operation and control failures
- Documented cases:
 - Predicting transformer failure
 - Control system failure at generators
 - Control system failure at HVDC line
 - Forced oscillations rock major tie-lines

Data Quality

Data Quality

- Data availability and quality are essential for applications
- DOE CERTS funded development of applications for monitoring data quality and developing best data management practices – competitive solicitation was awarded to EPG
- WECC funded a project on developing an application for PMU data calibration – competitive solicitation was awarded to EPG
- EPG PDVC application is available

Application Pipeline

Application Pipeline

- Research pipeline is very long with advanced applications, a few more mature are noted here
- Data mining
 - PNNL statistical application for finding system abnormalities and close calls
 - EPG data mining application
- Voltage stability controls
 - Synchrophasor-based reactive switching controller is being implemented at BPA
 - Voltage controller is evaluated at SCE
- Oscillation Damping Controls
 - PDCI modulation is evaluated by BPA, SCE and Sandia
- Wide Area Monitoring, Protection and Control (WAMPAC) by PG&E

Questions ?