Application of Advanced Wide Area Early Warning Systems with Adaptive Protection

DOE Smart Grid Project DE-OE0000120

presented to: NASPI Working Group Atlanta, GA

October 18, 2012

California Institute for Energy and Environment by: Lloyd Cibulka Electric Grid Research

Project Objectives

- Field demonstrations of advanced protection systems using synchrophasor data:
 - 1. Adaptive Security/Dependability Balance
 - Impedance Relay Zone "Encroachment" Detection & Alarm
- Develop Protection Information Tool:
 - 1. User-validated visualizations of protection information based on synchrophasor data
 - 2. Sensor web specifications enabling a uniform and standardized methodology for information exchange via extensions to OpenPDC

Research, Development & Demonstration Team

- Lloyd Cibulka CIEE: Project management and coordination
- Jim Thorp, Virgilio Centeno Virginia Tech: Relay algorithms development, testing and evaluation
- Roger King, Kari Babski-Reeves Mississippi State: Protection information tool development, testing and evaluation
- Vahid Madani PG&E: Host utility, field testing and evaluation
- Frank Ashrafi SCE: Host utility, field testing and evaluation
- Tariq Rahman SDG&E: Historical relay data, technical advisor
- Damir Novosel Quanta: Technical advisor

Adaptive Security/Dependability Balance

Dependability (Reliability): High probability that relays will operate for an actual fault. Security: Low probability that relays will operate when there isn't an actual fault.

- The primary protection system consists of three redundant sets of relays, any one of which can trip the line if it detects a fault. This biases the protection system in favor of reliability for normal conditions.
- Objective of Adaptive S/D Balance is to minimize the possibility that any one set of relays will false-trip during stressed system conditions, which might contribute to a cascading outage.
- Technical Approach: Utilize an "Adaptive Voting Scheme." If stressed system conditions are detected using synchrophasor measurements, a relay supervisory signal based on a 2-out-of-3 voting scheme is generated.

Security/Dependability Adaptive Protection Conceptual Design

© Copyright 2009, Southern California Edison

6

Adaptive Relay System Architecture in SCE Design

Application of Advanced Wide-Area Early Warning System with Adaptive Protection - SCE Design

© Copyright 2009, Southern California Edison

Alarms for Encroachment of Relay Trip Characteristics

- Looked at Following Relays:
 - Distance
 - Loss of Excitation
 - Out-of-Step
- Concentrated on Path 15 and Path 26
- Alarm system
 - Provides information and warning to engineers
 - Essentially a time-saving tool

The supervisory boundary is a concentric circle 50% larger than the largest zone of the relay.

Distance relays most susceptible to encroachment due to power swings or increasing power flow:

Line Name	Dist. From Z2/ Radius of Z2
Midway-Vincent ck 3 500kV	1.07
Midway-Vincent ck 2 500kV	1.12
Midway-Vincent ck 1 500kV	1.12
Los Banos-Midway ck2 500kV	3.59
Diablo-Midway ck 3 500kV	4.05
Diablo-Midway ck 2 500kV	4.36
Diablo-Gates 500kV	4.93
Vaca Dixon-Cottonwood 230kV	4.94

Phasor measurement units at:

Midway 500kV, Los Banos 500kV, Diablo 500kV, and Vaca-Dixon 230kV were initially proposed to monitor these lines.

Real-Time Alarm for Relay Characteristic Encroachments – Wide-Area Measurements to Determine / Predict Trends for Relaying Parameters

- Define a help system for operators and/or system engineers
 - Alarms as system conditions approach relay characteristics
- Identify possible countermeasures
 - Warning System
 - Legacy Systems Provide information and advance warning
 - Computer Relays Supervisory Control Action Alter Settings

Visualization: Overview Screens

- Types:
 - Speedometer to represent phase angle
 - Full speedometer
 - Hollowed speedometer
 - Arrow to represent phase angle
 - Geographic cluster map
 - Circle Display
- Current Functionality:
 - Allows users to assess the state of the whole system quickly
 - Easy identification of trouble areas
 - Ability to view angles between non adjacent angles
- Functions to be Implemented:
 - Ability to choose which overlay is being displayed

Full Speedometer

Hollowed Speedometer

Arrow

Substation View

- Substation View:
 - Based on single-line diagram
 - All overlays are linked to the same substation visualization
- Functionality:
 - Ability to select which PMU data should be displayed
 - Compare angular values for ends of the lines
 - Assess substation problems
 - Zoom in on data

Substation Views – Speedometers

Cluster Overview

- Uses geographic map instead of single-line diagram
- Uses same substation views as single-line diagram visualizations
- Same functionality as the single-line overviews
 - Added functionality of being able to zoom in at the cluster level

Circular Display

- Based on current display at SCE
- Shows a few selected PMUs
- Uses a single reference point
- Can change the number of PMUs displayed

3D Nose Curve

- Changes of active power, reactive power and voltage can be seen on one single surface
- Shape and/or color can be changed in real time to indicate system status
- Can include a sphere that moves along the surface of the curves as time progresses as an indication of system state

2D Nose Curve

Project Status

- Adaptive Relaying Schemes:
 - Phase I (R&D): Development and adaptation of research algorithms to real-time utility environment. (Completed)
 - Phase II (Pilot Testing): Testing and validation (POC) of relaying schemes in University and in PG&E and SCE Protection System Laboratories. (Completed)
 - Phase III (Field Demonstration): In progress. Original project end date was September 2012, now December 2013 (pending DOE approval).
 - Field installations to be completed by ~ January 2013
 - Data collection to be completed by September 2013
 - Data evaluations, Final Report by December 2013
- Visualization Tool:
 - Phase I (R&D): OpenPDC and Sensor Web specifications; initial PIT visualizations developed (Completed)
 - Phase II (Pilot Testing): Interviews and workshops with utility engineers to refine visualizations (Completed)
 - Phase III (Field Demonstration): Second round of evaluations in users' offices (In progress).

Questions?

Lloyd Cibulka

Research Coordinator California Institute for Energy & Environment Electric Grid Research Phone: 510-290-3875 Email: Lloyd.Cibulka@uc-ciee.org

Backup Slides

Decision Tree – Heavy Summer Reference PMU – Vaca Dixon (PG&E)

PMU at DEVERS & Diablo

PMU at - Ii735 (imaginary part of the current through transmission line between Devers – Valley SC) and IR19 (real part of the current through transmission line between Palo Verde – Devers) **DEVERS** PMU at - li1033(imaginary part of the current through transmission line between Diablo -Midway) **DIABLO** And **VACA DIXON**

Decision Tree – Heavy Winter Reference PMU – Tesla (PG&E)

PMU at TESLA

PMU at – IR1106 (real part of the current through transmission line between TESLA – LOS BANOS) **TESLA**

Total PMUs req. in this Project (Heavy Summer & Heavy Winter) at:

VACADIXON TESLA DEVERS DIABLO

PDC Phasor Processor

Stream Reader

- Reads C37.118 PDC stream
- Connection via TCP
- User selects phasor from stream for the decision tree Decision Tree
- Preprocesses data prior to tree assignment
- User selects tree type from controller

Modbus TCP

- Retrieves tree type from controller
- Sends vote value to controller from decision tree
- Tree type and vote status are both displayed in the GUI

Architecture Extending OpenPDC

Highlighted components being implemented uses openPDC data streams:

Enables to incorporate standardized models.
Loose coupling in a Services Oriented Architecture (SOA)publish/subscribe mechanism.
Cross-domain integration capabilities

-Development in JAVA for cross platform compatibility

Sensor Web Architecture

Architecture of the Power Sensor Web

