

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Model Validation of SVC and STATCOM Using PMU Data

Pouyan Pourbeik, EPRI

George Stefopoulos, NYPA

NASPI Technical Workshop: Model Validation using Synchrophasor Data

October 22, 2013

Rosemont, IL

- Project scope and information
- Model development background
- Model identification and validation process
- •Example validation results

PROJECT BACKGROUND

- Identify dynamic models for NYPA's static VAr systems:
 - STATCOM (Marcy Convertible Static Compensator)
 - SVC (Refurbished device)
- Use generic models previously developed by EPRI
- Utilize phasor measurements obtained by NYPA's synchrophasor network
 - -Part of synchrophasor research
 - -Supported via NYISO's SGIG project

BACKGROUND ON TECHNOLOGIES AND MODELS

NEW MODELS DEVELOPED IN 2010/2011

- Developed thorough collaboration with WECC and vendors [1] & [2]
- Released in major commercial tools (GE PSLF[™], Siemens PTI PSS®E)
 - SVSMO1 model of a TCR-based SVS
 - SVSMO2 model of a TSC/TSR-based SVS
 - SVSMO3 model of a VSC-based SVS
- These are generic models intended for emulating the majority of SVS systems, they are NOT an exact representation of any actual control strategy

GENERIC MODEL SVSMO1 – FOR SVC

GENERIC MODEL SVSMO3 – FOR STATCOM

THE VALIDATION PROCESS

PMU RECORDINGS

Calculating P, Q, I, and B $S = \sqrt{3} \times \tilde{V}t \times \tilde{I}t^*$ P = real(S)Q = imag(S) $\overline{V}t = Vt/V_{nom}$ $I_{SVS} = Q/Vt$ $B_{SVS} = Q/Vt^2$

TYPICAL EVENT RECORDINGS

THE VALIDATION PROCESS

- Take data recorded by the PMU during disturbance events
- Calculate from the PMU data the injected reactive current (or susceptance for SVC) and reactive power of SVS
- Choose the appropriate model for the device
- Play the measured voltage back into the model and fit the simulated reactive current I (or susceptance B) and Q to the measured values
- Optimize the gains of the controllers to get a good match via least squares estimation
- The optimization process is automated this is done in a simple standalone software tool that was developed and is called Static Var System Model Validation (SVSMV) [3]

EXAMPLE VALIDATION RESULTS

MODEL VALIDATION – STATCOM Using SVSMO3 Model

MODEL VALIDATION – STATCOM Using SVSMO3 Model

MODEL VALIDATION – SVC Using SVSMO1 Model

MODEL VALIDATION – SVC Using SVSMO1 Model

[1] P. Pourbeik, D. Sullivan, A. Boström, J. Sanchez-Gasca, Y. Kazachkov, J. Kowalski, A. Salazar, A. Meyer, R. Lau, D. Davies and E. Allen, "Generic Model Structures for Simulating Static Var Systems in Power System Studies – A WECC Task Force Effort", *IEEE Transactions on Power Systems*, August 2012.

[2] Generic Static Var System Models for the Western Electricity Coordinating Council, April 2011. <u>http://www.wecc.biz/committees/StandingCommittees/PCC/TSS/MVWG/</u> <u>SVCTF/Shared%20Documents/GenericStaticVarSystemModelsforWECC.pdf</u>

[3] *Static Var System Model Validation (SVSMV) Version 2.0*, June 2013, EPRI Product ID 3002001009. <u>http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?</u> <u>ProductId=00000003002001009</u>

Together...Shaping the Future of Electricity

Pouyan Pourbeik Technical Executive Electric Power Research Institute <u>ppourbeik@epri.com</u> <u>www.epri.com</u> George Stefopoulos Research and Technology Development Engineer I New York Power Authority <u>george.stefopoulos@nypa.gov</u> <u>www.nypa.gov</u>

ELECTRIC POWER RESEARCH INSTITUTE