Interoperability Issues, Tests, and Practical Examples (PMU, PDC, SuperPDC)

Vahid Madani / Farnoosh Rahmatian

NASPI Meeting, October 16, 2012, Atlanta, GA

Interoperability Considerations

- Standards
 - Having standard(s) is required but not sufficient for interoperability.
 - Standard compliance doesn't guarantee interoperability
- Implementation Agreements
 - Clear Implementation Agreement(s) among various device developers and manufacturers are usually required to achieve interoperability
- Testing
 - Both standards and implementation agreements are subject to interpretation and may include options, choices, or configurations.
 - Only actual testing can verify interoperability between various devices/systems.
 - Testing often identifies the need (or desire) for improvements and enhancements, as well as feedback for improving standards and implementation agreements.
- Life-cycle management
 - Life-cycle management, asset utilization, and revision control are all considerations affected by interoperability
 - Device interoperability needs to support system life-cycle management and asset utilization (long-term system deployment roadmap to be supported)

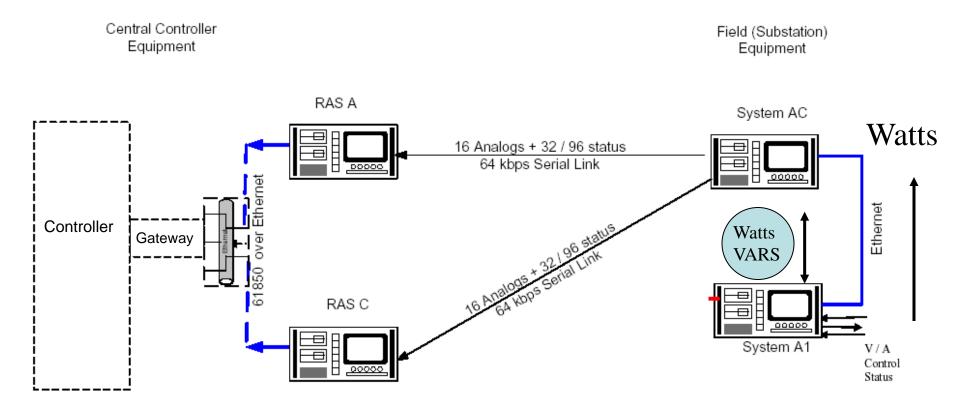
IEC 61850 Certification

- Benefits of conformance test before implementation?
 - Resolves interpretation differences
 - Early identification of nonconformances
 - Exact functionality of the protocol is identified
 - Multi-vendor solutions will have interoperability issues
 - New offerings will have bugs
 - Most manufacturers have missing pieces
- Conformance Test
 - Does implementation conform to the standard?
 - > What is the behavior in error situations?
- Interoperability Test
 - Do the communication services provided by one device interoperate with other devices?
- Involves UCA-IUG Documents
 - > QA Program
 - Accreditation program
 - > Approved Test Procedures
- NASPI IEC 61850 Tutorial- October 2012

- Requiring a Certified Product from a Vendor Means:
 - Vendor makes the investment as appraisal costs
 - Cost is spread over all sold licenses of the product
 - Early discovery of problems avoids dealing with unexpected behaviors during installation and over project life cycle
 - Vendor and User save dollars and time in Operation & Maintenance

5

IEC 61850 Certification does not address....


> Interoperability Test

✓ Does not cover application interoperability

✓ Burden is on the User – Include in your Spec.

- Stress and Performance Test
 - \checkmark Identifies boundary limits for the device
 - ✓ Establishes whether the device meets the performance requirements for the application
- Reliability, Redundancy, Failure Modes and Contingencies

Example – Hybrid GOOSE and Serial Communication

Use of high speed serial links (Up to T1 level) and Interface with GOOSE Messaging

Benefits

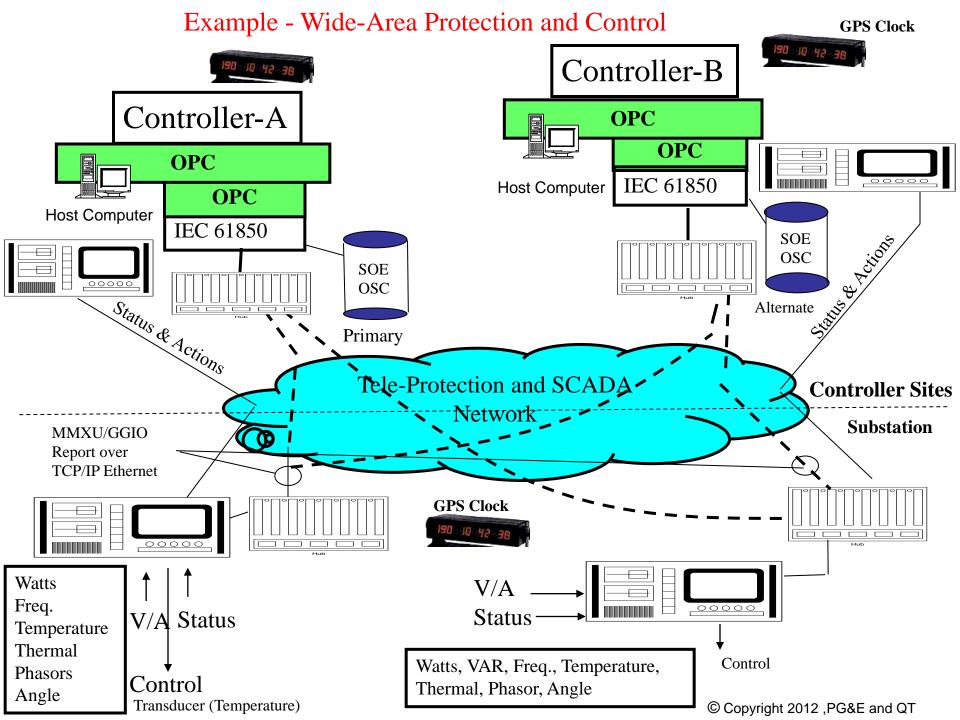
- Replacement of wires with communication
 - > Costs
 - Improved flexibility
 - Reduced commissioning time
 - Improved monitoring
 - Ease of use with optical sensor technology
 - > Prevents mixing DC circuits
 - > Ease of applications when I/Os are limited
- Besides SCADA Data
 - Superior Asset Management means
 - Condition monitoring of primary equipment
 - Power Quality Information
- Self description and configuration language
 - > Verify the configuration of the system
 - > Automatically create test patterns
- Ease of Applications with Synchronized phasors
 - > Data sharing over large geographical grids
 - ✓ Neighboring systems (subject to Cyber security)
 - Phasor Data Concentrators (PDC)

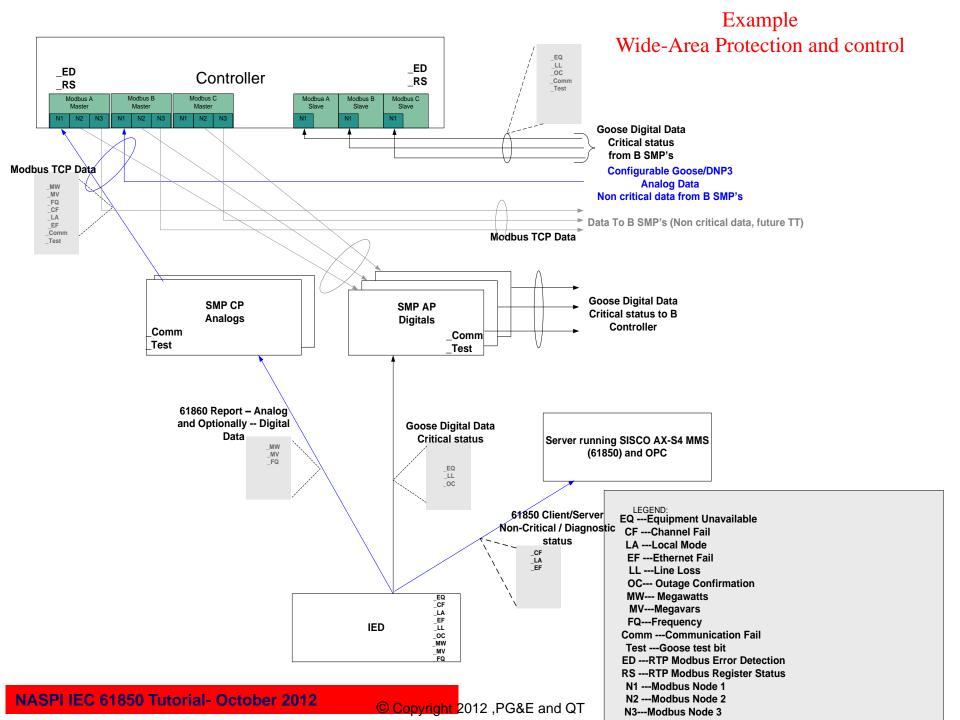
- ✤ When implemented properly...
- Self monitoring capability
 - Constant real-time status of control point communications, with alarming by IEDs for failure anywhere from the source IED intelligence to the implementing IED.
- Fits with "overlapping zones of monitoring" approach to having a maintenance program.
 - Critical for Protection
 - Vital for System Integrity Protection Schemes (SIPS) and Wide-area Remedial Actions Schemes (RAS)
- Better than many or most existing schemes in this way
- Timing and loss rate monitoring can be programmed

Design Requirements/Criteria

Example – typical for the overall system

- 1. High availability/reliability (>99.995)
- 2. Automatic self diagnostics
- 3. Easy to maintain
- 4. Throughput time < 25 ms
 - Hierarchical structure
 - Detection, transmission, central processing, and execution
- 5. Full Redundancy (no single point of failure)
- 6. Controllers-Triple Modular Redundant- (2 out of three voting scheme)
- 7. Compliance with regulations


Messaged versus Hardwired

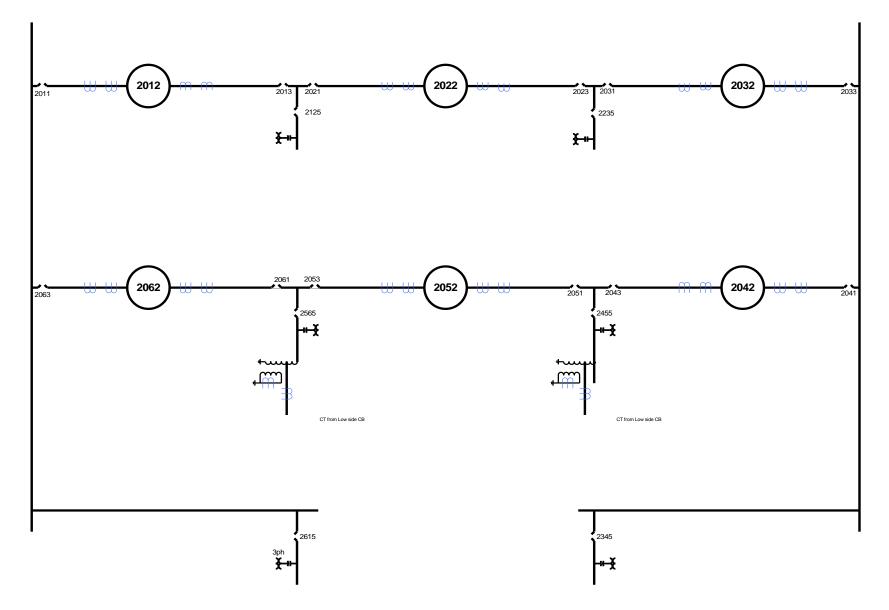

• Advantages:

- Replace local control wiring with network communications
- No need for periodic testing (devices communicate continuously)
- Minimizes hardware installation
- Saves space
- > Provides almost endless expansion capabilities
- > No need to update wiring diagrams
- No contacts, debounce filtering, not prone to noise

• Drawbacks:

- Signal Propagation delay May be variable
- Need robust setting tracking mechanism (version control)

Benefits of using New Emerging Technologies


- Condition based maintenance (reduction of human errors)
- Performance statistics
- Tools for Clearance analysis and tracking
- Database historian can be leveraged to provide maintenance and testing reports.
- Flexibility in Engineering, Design, and Asset Utilization
- Access operational and non-operational data for many business purposes
- Sequence of Events (SOE) Records-Oscillography
- Trending data
- Help in system restoration
- Automated reports/charts generation
- Ability to record and playback actual events

Why focus on Ethernet control?

- Deployment of advancing IT technology elsewhere in the enterprise Can we leverage the investment?
- Industrial activity
 - Ethernet LANs for control used in process control
 - Modbus RTU on TCP
 - Ethernet IP DeviceNet in Ethernet format.
 - Lots of low-cost hardware is breaking down old focus on "nondeterministic" network – not as bad as feared!
 - Sub-microsecond accuracy time sync over Ethernet (IEEE 1588)
- Substation LANs
 - DNP3 over TCP; Modbus TCP
 - > UCA and IEC 61850 emerging (more later)

Example: RING or Breaker and Half Bus Messaging

NASPI IEC 61850 Tutorial- October 2012

What is Needed? - Tools

	REMOTE I/ORING BUS	CB-2012	Set A Line - 1	CB-2022	Set A - XFMR	CB - 2032	Set A Line 3
Device / Output	DEVICE:	1	2	3	4	5	6
1.1	BFT BLOCK AUTO (86BF)	RO:1		RI:3			
1.3	BFT TO DTT	RO:3	RI:2				
1.2	HS 10NLY INTLK TO LEFT	RO:2					
1.4	HS 10NLY INTLK TO RIGHT	RO:4		RI:4			
1.5	CBM CONTROL	RO:5		RI:6			
1.7	CBM LT13 TO LEFT	RO:7					
1.8	CBM LT14 TO RIGHT	RO:8	RI:9	RI:9			
1.12	52A 20n2	RO:12		RI:11			
2.8	STUB BUS STAT	RI:5	RO:8	RI:10			
2.15	REMOTE BLK CLOSE	RI:15	RO:15	RI:16			
3.1	BFT BLOCK AUTO (86BF)	RI:1		RO:1		RI:3	
3.3	BFT TO DTT		RI:1	RO:3			
3.2	HS 10NLY INTLK TO LEFT	RI:2		RO:2			
3.4	HS 10NLY INTLK TO RIGHT			RO:4		RI:4	
3.5	CBM CONTROL	RI:7		RO:5		RI:6	
3.7	CBM LT13 TO LEFT	RI:8	RI:8	RO:7			
3.8	CBM LT14 TO RIGHT			RO:8	RI:9	RI:9	
3.12	52A 20n2	RI:12		RO:12		RI:11	

What is needed?

- Adequate training of engineers and practitioners
- Adoption to existing substation automation concepts and changes in the specification and design process
- Conformance Certification of Devices to IEC 61850
- The protection engineers need to prepare for the changed specification and design process
- Tools Industry Participation is Key:
 - Application Development
 - > Ddocumentation of engineering desig Substitues for Wiring and Schematics
 - Mapping
 - Performance Tracking
 - > IP Address Standards and Management Over Project Life Cycle
 - \checkmark Ease of expansions
 - Configuration and testing
 - Troubleshooting
 - > Maintenance
- Basic understanding of
 - > The engineering approach with the use of the configuration language
 - > The concepts of the object models and the basic communication services
 - > The Ethernet technology with switches and priority tagging

What is Needed: Process Change

- Roll out for substation automation and Protection interlocking
- Top down process for specification and design
- Specification shall concentrate on
 - Functionality and data to be communicated
 - Performance and availability requirements
- Role of system integrator
 - Roles need to be properly defined
 - Responsible for performance and behavior of the overall system
 - Cooperation between user and manufacturer is important

Summary Conclusion

- ✤ Balancing Wire vs. Messaging
 - Know your application
 - Minimize logic variations between bus configurations
- Challenges and Opportunities Bottom line:
 - Requires Teamwork with IT, Automation, and SCADA / EMS groups
 - Requires Acceptance by Management and Operators
 - Automating the system to meet the challenges of 21st century & reliable energy delivery
 - Real-time system prognosis and adaptive protection and controls
 - Reduce Down time
 - Easily adaptable to advancing technology – Ease of upgrade
 - Saving time & Smart Investment \$\$\$
 - > Tools User input is needed

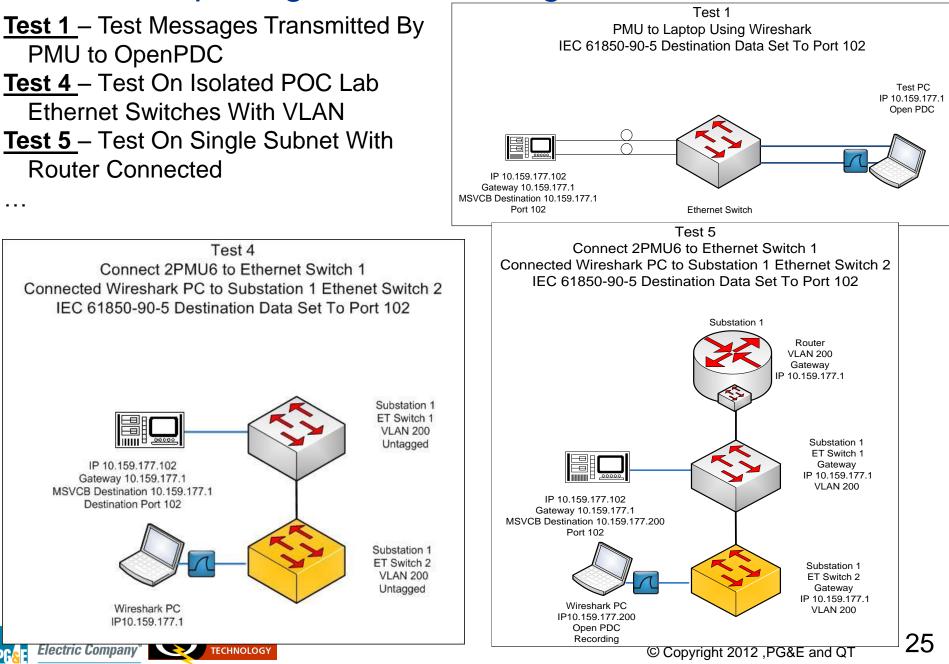
- Real benefits
 - Innovative protection & control integration and automation solutions
- Internal Challenges and solutions
 - Internal:
 - \checkmark Develop a migration path
 - ✓ Widespread rollout vs. spot upgrade
 - ✓ Standards, Training, Management Leadership support, In-house tools
 - ✓ When opportunity knocks, follow the blue print
 - > Externals:
 - ✓ Industry collaborations for well defined standards
 - ✓ Work with vendors to develop features, enhance capability, tools, training

IEC 61850 – Process Level Mappings

- Get rid of most switchyard wiring.
- Streams of sampled values of voltages and currents multiplexed on few Ethernet fibers.
- Status and samples come from switchyard; control and time signals goes out into the yard
- Wiring losses and burdens are cut.
- EMI is eliminated.
- New signals can be added without new wiring to control house.

Interoperability Test – PMU to PDC Communications

- Synchrophasor data transport using IEC 61850-90-5 streaming data:
 - PMU to Substation PDC
 - Substation PDC to Super PDC
 - PMU to Super PDC
 - Comparison with IEEE C37.118 UDP
- Communicating configuration data
- Mixed protocol a PDC receiving IEC61850-90-5 and transmitting in IEEE C37.118.2-2011 UDP
- Impact of timing signals (e.g., IEEE 1588 v2 with power profile C37.238-2011)
- Layered testing
 - Can the receiving device parse the received data (protocol)
 - Is the received data correctly understood / interpreted (format)
 - Is the received data correct or corrupted and consequences (data quality)
 - E.g., misunderstood time-stamp and what will happen to the data (lost or saved or flagged)

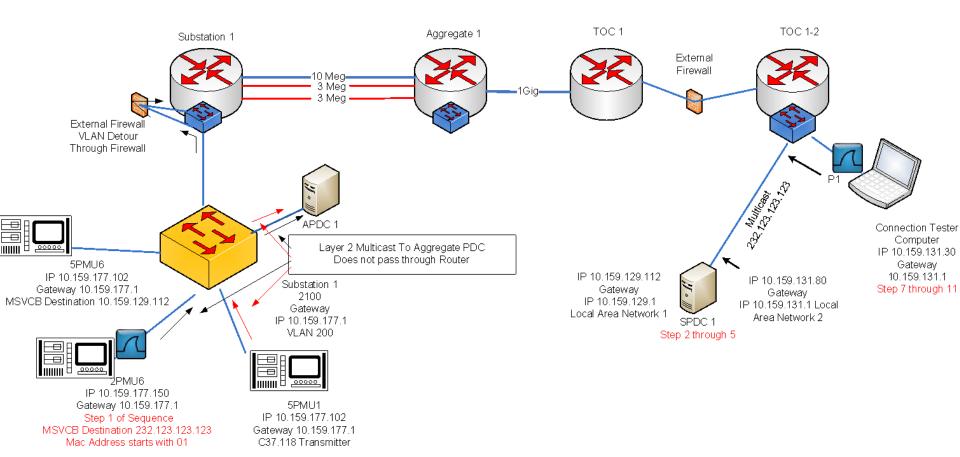

Examples: Comparison of Data Transmission using C37.118 UDP and IEC 61850-90-5 Unicast and Multicast

Set-up at PG&E Proof of Concept (POC) Test facility:

- Two PMUs, labeled 5PMU1 and 5PMU6 see the same voltage and current information
 - 5PMU1 transmits using C37.118 through a substation PDC to a SuperPDC (SPDC)
 - 5PMU6 transmits using 61850-90-5 directly to the SPDC
- 1 ASDU / Frame One-to-one relationship between frame and data units
 - Data unit is same as message size, i.e., 4300 bytes
 - Reminder: ASDU Application Service Data Units
 - Can also set up to include multiple data units (ASDU) per frame To allow repeated data to protect against loss of data (address missing data). Not shown in this presentation.
- PMUs are streaming P Class data at 120 records (frames) per seconds
- Interval of tests is 10 second (1200 records / seconds)



Test Setup Progression – Using IEC 61850-90-5



Test Setup Progression

- Unicast and Multicast between PMUs and Test PC
- IEC 61850-90-5 Destination Data Set To Port 102
- 5PMU1 transmits using C37.118 through a substation PDC to a SuperPDC (SPDC)
- 5PMU6 transmits using 61850-90-5 directly to the SPDC
- Test 13 Unicast and Multicast To SPDC Through Firewall

Multicast Between Field and Central Location

Province Gas and Electric Company® COLORY TA

Interoperability Tests – Summary of the Findings

- A collaborative testing environment is a significant asset
- Various interpretations of standards and implementation agreements
 - Quality and status flags limited implementation in some cases
- Different challenges for streamed data (e.g., synchrophasor measurements) and one-time data (e.g., status, control, config data)
- Unicast and multicast implementations
 - Varying support levels for routers, switches, and firewalls within the data path
- Impact of security features on interoperability and testing
 - Access to devices for configuration
 - IGMP 3.0 support
- Awareness of other system factors such as operating systems or communications stacks settings and limitations.
 - Example, UDP and TCP buffer sizes.
- Tools, tools, tools ...
 - The need for efficient configuration and testing tools to accelerate and streamline interoperability (and other) tests.

