Brief Overview of IEEE 1588 Test Results – Concept and Practical Examples and Lessons Learned

Mark Adamiak / Farnoosh Rahmatian

NASPI Meeting, October 16, 2012, Atlanta, GA

imagination at work

IEEE 1588 – Precision Time Protocol (PTP) over Ethernet

- Capable of sub-microsecond time sync
- Provides a messaging system to identify the various clock performances
- Operates through messages in the Ethernet data frame

1588 Basic Operation (1-step, 2-step)

Synchronization Details (clauses 6 & 7)

4

Synchronization Details (continued)

Master clock receives:

Delay_Req message

Master clock sends:

Delay_Resp message

Time at which a Delay_Req message passed the Timestamp Point (t_4)

Timestamp Point

Ethernet Message Time Stamping

Hardware-based Time Stamp is applied based on the Rising Edge of the First Bit after the Start of Frame Delimiter

Time Sync Calculations

 $MS_difference = offset + MS_delay = t2-t1$ = 11:30 - 10:00 = 90 min

 $SM_difference = -offset + SM_delay = t4-t3$ = 11:30 - 10:30 = -30 min

Assuming that MS_delay=SM_delay then:

Offset and Delay Calculations

Offset = $(MS_difference - SM_difference)/2$ = (90 - (-30)) / 2 = 60 Min

One_Way_Delay = (MS_Difference + $SM_difference)/2$ = (90 + (-30)) / 2 = 30 min

OUANTA

TECHNOLOGY

imagination at work

Pacific Gas and

Electric Company[®]

7

Announce Message:

- Clock ID
- Grand Master Clock Accuracy
- Grand Master Variance
- Origin Time Stamp (Sec and nsec)
- UTC Offset
- Grand Master Time Source (e.g. GPS)

Included in the Sync Message:

- Message ID (e.g. Sync, Follow-up, delay request
- PTP Version Number
- Message Length (2 bytes)
- Subdomain Number (1 byte)
- PTP Flags (16)
- Correction (nsec)
- Clock Identity (8 bytes)
- Source Port (2 bytes)
- Origin Time Stamp (Seconds & Nanoseconds)

Timing Latency & Fluctuation

10

© Copyright 2012 ,PG&E, QT, & GE

Proof of Concept Testing - Architecture

PG/

PG&E Synchrophasor Project – Proof of Concept Architecture

Observations – Timing functions (GPS, IRIG-B, and IEEE 1588)

Noise Impairment Tests

- Noise Injection / IP Packet interference

Observations - Timing functions (GPS, IRIG-B, and IEEE 1588)

Pacific Gas and Electric Company[®]

Observations – Timing functions (GPS, IRIG-B, and IEEE 1588)

- Several GPS-synchronized clocks providing timing accuracy better than 1 us (mostly on the order of 0.1 us)
- Some clocks did not update time-quality bits in IRIG-B timing data after loss of GPS input. Similarly, for IEEE 1588 PTP.
- In the absence of GPS input, clock drifts on the order of 10⁻⁷ to 10⁻⁹ were observed from different clocks.
 - Typical commercial products
 - > 10⁻⁹ is a drift of 4 us in about an hour
 - > 10^{-7} is a drift of 26 us in about 4 minutes (Bad Time)
 - Synchrophasor permissible TVE of 1% ~ 26.5 us
- Other 1588 PTP (precision time protocol) test results
 - Typical accuracy of 0.1 to 0.5 us has been observed.
 - Any delay in network communication can translate to delay in Transparent Clock when not compensated.
 - Some Slave clocks assume transmission delay is the same in both directions (usually OK, but not always)

Tests – Summary of the Findings

- Several GPS-synchronized clocks providing timing accuracy better than 1 us (mostly on the order of 0.1 us)
- Some clocks did not update time-quality bits in IRIG-B timing data after loss of GPS input. Similarly, for IEEE 1588 PTP.
- In the absence of GPS signal, clock drifts on the order of 10⁻⁷ to 10⁻⁹ were observed from different clocks.
 - Typical commercial products
 - > 10^{-9} is a drift of 4 us in about an hour
 - > 10⁻⁷ is a drift of 26 us in about 4 minutes (Bad Time)
 - Synchrophasor permissible TVE of 1% ~ 26.5 us
- Other 1588 PTP (precision time protocol) test results
 - Typical accuracy of 0.1 to 0.5 us has been observed.
 - Any delay in network communication can translate to delay in Transparent Clock when not compensated.
 - Some slave clocks assume transmission delay is the same in both directions (usually OK, but not always)

IEC61850 Levels of Time Synchronization

imagination at work

LN – STIM identified to set time and provide time synchronization in a substation

<u>ClassAccuracy</u>		Function/phase error
T1	± 1 ms	Event timing
T2	\pm 0.1 ms	Zero Crossing / Sync Check
Т3	± 25 μs	32' at 60Hz / 27' at 50 Hz
T4	\pm 4 μ S	5' at 60Hz / 4' at 50 Hz
T5	\pm 1 μ S	1' - Synchrophasors
T6	\pm 0.1 μ s	Available, but not defined yet

C37.118 4 Bit Time Quality Indicator Code

BINARY	HEX	VALUE (worst case accuracy)
1111	F	FaultClock failure, time not reliable
1011	В	10 seconds
1010	A	1 second
1001	9	100 milliseconds (time within 0.1 sec)
1000	8	10 milliseconds (time within 0.01 sec)
0111	7	1 millisecond (time within 0.001 sec)
0110	6	100 microseconds (time within 10 ⁻⁴ sec)
0101	5	10 microseconds (time within 10 ⁻⁵ sec)
0100	4	1 microsecond (time within 10- ⁶ sec)
0011	3	100 nanoseconds (time within 10-7 sec)
0010	2	10 nanoseconds (time within 10-8 sec)
0001	1	1 nanosecond (time within 10-9 sec)
0000	0	Normal operation, clock locked

18