

The Standards Based Integration Company

Systems Integration Specialists Company, Inc.

Insight in IEC 61850

What is it?

1

Ralph Mackiewicz and Herb Falk SISCO, Inc. 6605 19½ Mile Road Sterling Heights, MI 48314-1408 USA Tel: +1-586-254-0020 Fax: +1-586-254-0053 Email: ralph@sisconet.com – herb@sisconet.com

Topics

- IEC 61850 and Its Relationship to other IEC Standards
- Impact of IEC 61850 on the Engineering Processes of SCADA, Automation, and Protection
- IEC 61850 Profiles and use of networks
- IEC 61850 Modeling
 - Device and Object Models
 - Service/Behavior Models
- Substation Configuration Language

The Standards Based Integration Company

Systems Integration Specialists Company, Inc.

IEC 61850 and Other Key IEC Standards

What is it with all these "models"?

Definitions:

Interoperability and Integration

The ability of computer systems to exchange information with other systems and to cooperatively implement a useful process or function for the system owner/user.

Interoperability and Integration

• Easy to Achieve:

Nearly anything is possible with enough money and development effort

A Better Way

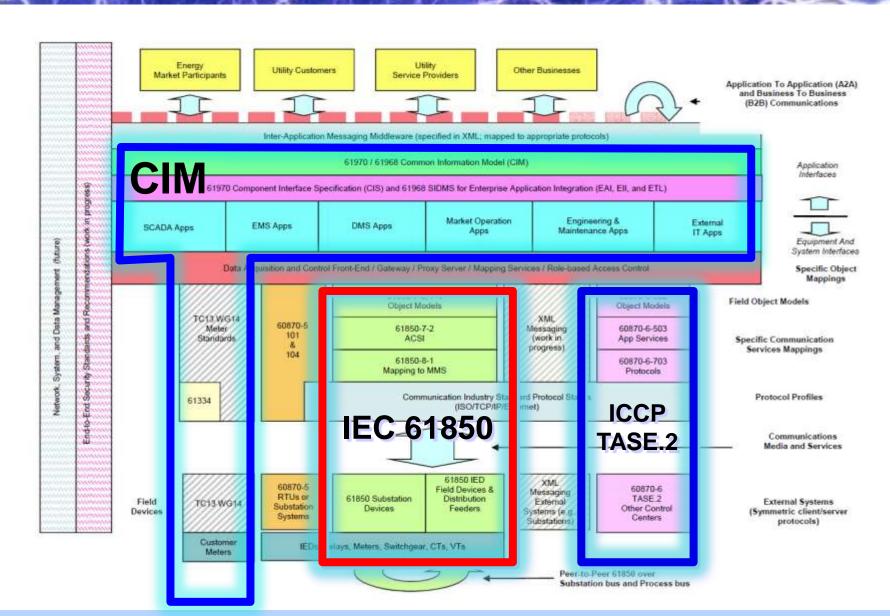
- Interoperability and Integration without having to program it all yourself:
 - Where applications and devices are inherently capable of interoperating with other systems and performing integrated application functions in a cooperative and distributed manner.
- This is only possible if there are standards to enable it.
 - This work is progressing.
- This is the goal of the IEC TC57 standards

Standards are Needed

- Standards enable independent developers to reduce the uniqueness of their solutions at the interface points
- Traditionally, this meant the protocols to the devices
- But, this did not address the **integration** dilemma for applications (not devices) that did not use "protocols" as the interface
- Existing protocols provided **interoperability** but little **integration**
- A new level of standardization is needed
- This is what the IEC TC 57 Standards are about.

Strategic Vision for Integration and Interoperability

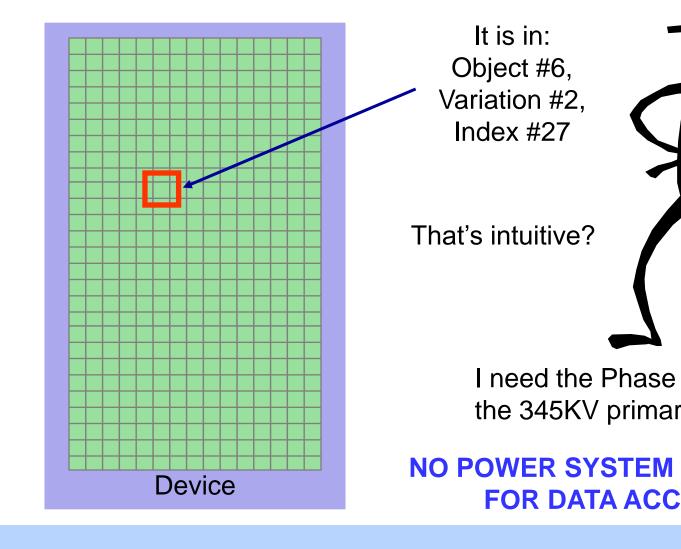
Abstract Modeling


Object and Information Models

- Abstract Service and Interface Models
- Self Description and Discovery
- Technology Independent Design

Security

- Applying mainstream standards to TC57 standards
- Power system specific applications and recommendations


IEC TC 57 Technical Committees

• WG 3 – Telecontrol Protocols

- IEC 60870-5-7 Security for IEC 60870-5 protocols.
- WG 10 Power system IED communication and associated data models
 - IEC 61850 Communications for power system automation
- WG 13 Energy management system application program interface (EMS API)
 - IEC 61970 Common Information Model (CIM) and Generic Interface Definition (GID)
- WG 14 System interfaces for distribution management (SIDM)
 - IEC 61968 CIM for distribution and model driven messaging
- WG 15 Data and communication security
 - IEC 62351 Communications Security
- WG 16 Deregulated energy market communications
 - IEC 62325 CIM for energy markets
- WG 17 Communications Systems for Distributed Energy Resources (DER)
 - IEC 61850-7-420 IEC 61850 for DER applications
 - IEC 61850-8-2 Web service mapping for IEC 61850
- WG 18 Hydroelectric power plants Communication for monitoring and control
 - IEC 61850-7-410 IEC 61850 for Hydropower applications
- WG 19 Interoperability within TC 57 in the long term
 - IEC 62445 Use of IEC 61850 between control centers and substations
 - IEC 61850-CIM harmonization, ICCP-TASE.2 update, naming and design rules for CIM, quality codes.
- WG 9 and WG 20 Power line carrier systems for DMS (9) and planning for same (20)
 - IEC 60495, 60663, 62488 Power line carrier systems
- WG 21 Interoperability within TC 57 in the long term
 - IEC 62746 Interfaces and protocol for systems connected to the Smart Grid
- **JWG 16** DLMS/COSEM metering protocols (TC13)
- JWG 25 Windpower systems (TC 88)

Traditional Protocol Standards

- Specified how you arrange bytes on the wire in order to transfer bytes of data between a device and an application
- Good News: It worked! Device communications costs were lowered.
- Bad News: No standard for data representation or how devices should look and behave to network applications.
 - Some Interoperability but not Integration

Typical Legacy Protocol Data Model

I need the Phase A voltage for the 345KV primary feeder

NO POWER SYSTEM CONTEXT FOR DATA ACCESS

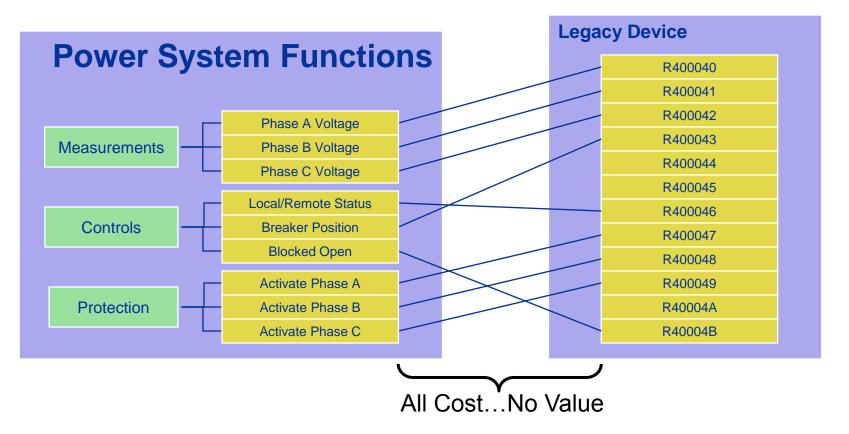
Behavior Modeling

SISCO

• Assume Index #25 is always used to store breaker status.

- Does 1 mean open or closed?
- Can I write this object to operate the breaker?
- □ Where is the select?
- □ Is it selected?
- Even if every device used Index #25 to hold breaker status this still isn't enough to provide integration.

A New Approach Needed

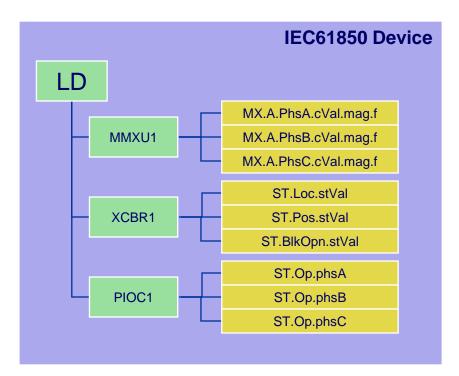

- For protocols to provide interoperability at the system level they need to:
 - Specify the bytes/format of the data on the wire
 - Specify the meaning of data
 - Specify the behavior of the data

IEC 61850: New Approach

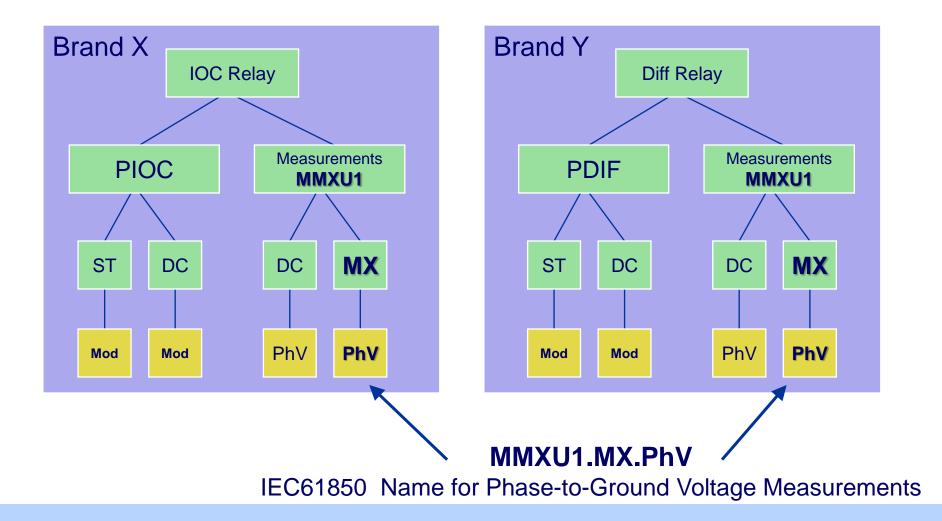
- IEC 61850 is a new and innovative approach to substation automation:
 - Standardized Device and Object Modeling
 - Logical Devices, Logical Nodes, Common Data Classes, etc.
 - Extensions unique to specific applications (Hydro, Distributed Energy Resources (DER), Wind power, etc.)
 - Standardized Service/Behavior Modeling
 - Standardized XML for Systems and Device Configuration
 - Standardized Communications Protocols for Specific Use Cases:
 - Station Level Monitoring and Control (substation SCADA) (TCP/IP)
 - Protection and Control GOOSE over Ethernet
 - Sampled Values Process Bus over Ethernet
 - Standardized Conformance Test Cases

Legacy Object Mapping

• Legacy data objects must be mapped to power system for each different device, application, and vendor.



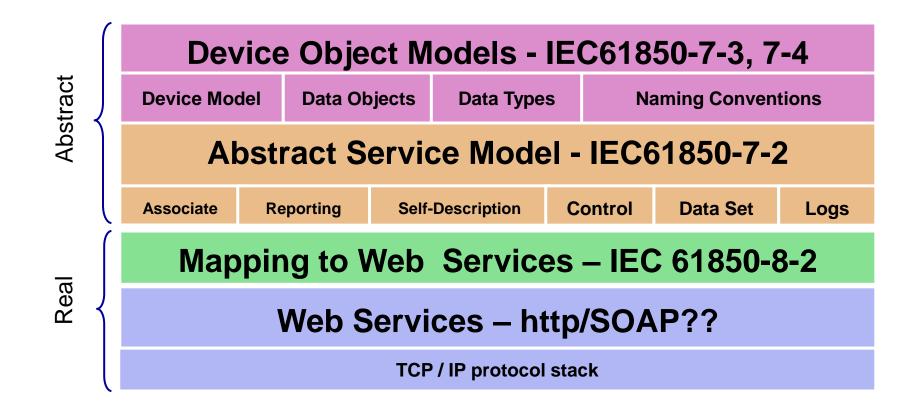
IEC61850 Object Model


IED:Relay1/MMXU1.MX.A IED:Relay1/XCBR2.CO.Pos Current **Breaker Position Control** Measurements PhV A PhV Pos Pos Α Amps Volts Amps Volts Position Position ST CO MX DC Status Controls **Descriptions Measurements Logical Nodes** IEC 61850 Object Names MMXU1 XCBR2 Measurement Unit #1 **Circuit Breaker #2 Use Power System Logical Device** Context (e.g. Relay1) **Physical Device – Named IED** (network address)

IEC 61850 Object Mapping

• **NO MANUAL MAPPING NEEDED**: IEC61850 objects already portray the power system context.

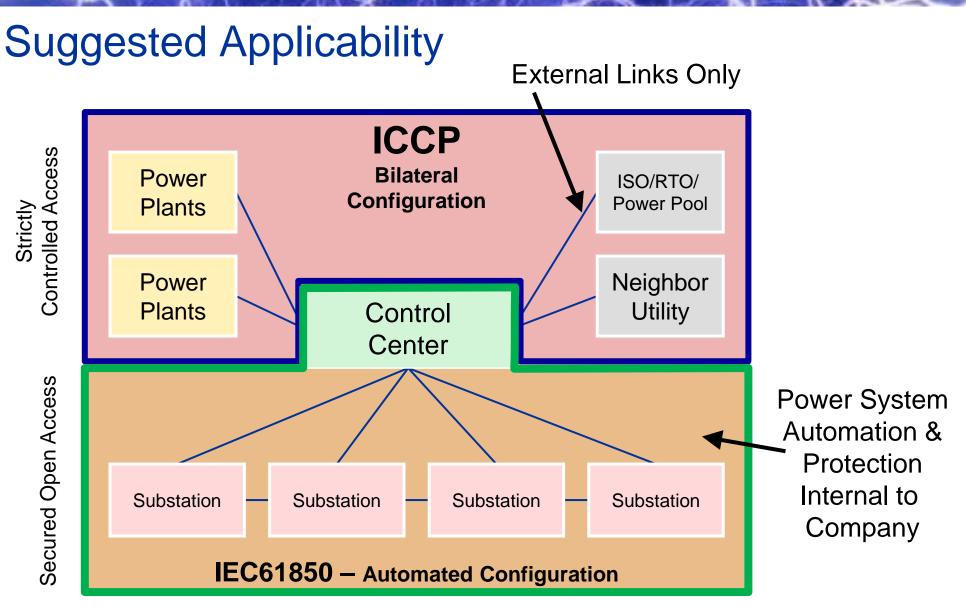
IEC61850 Models Independent of Function and Brand


Device Object Models - IEC61850-7-3, 7-4										
Device Mo	del	Data Objects		Data Types		S	Naming Conventions			
Abstract Service Model - IEC61850-7-2										
Associate	Reporting		Self-Des		cription	Control		Data Set Lo		Logs
Mapping to MMS Protocol - IEC61850-8-1										
Initiate	Info	oReport.	GetN		NameList		Vrite	VariableList		Journals
TCP/IP										
Ethernet										

Benefits of Abstraction and Layering

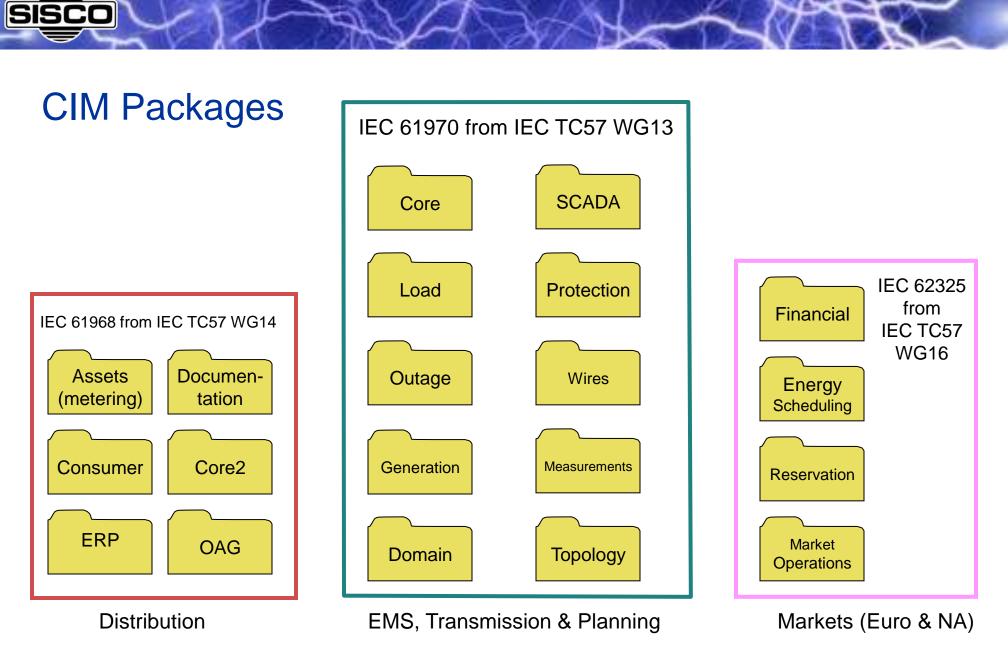
- Abstract models are independent of the protocol and can be used outside of protocol applications (SCADA tag naming convention)
- Enables definition beyond just the bytes on the wire to incorporate naming and behavior
- Each layer can be optimized independently
- Enables protocols to be separated from application functions to enable use of existing standards (Ethernet, TCP/IP, etc.)
- Enables use of the abstract concepts to other protocols/systems in the future as technology changes.

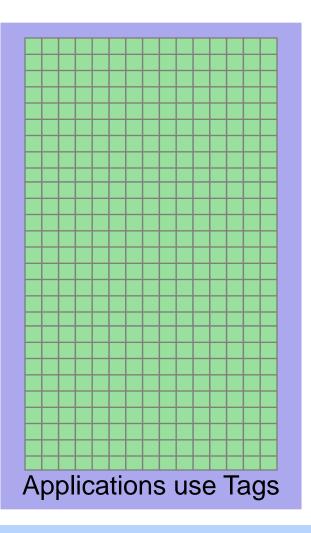
Other Mappings Possible

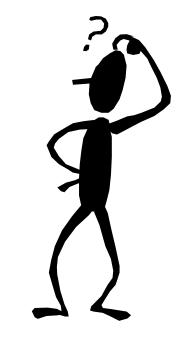


What is ICCP?

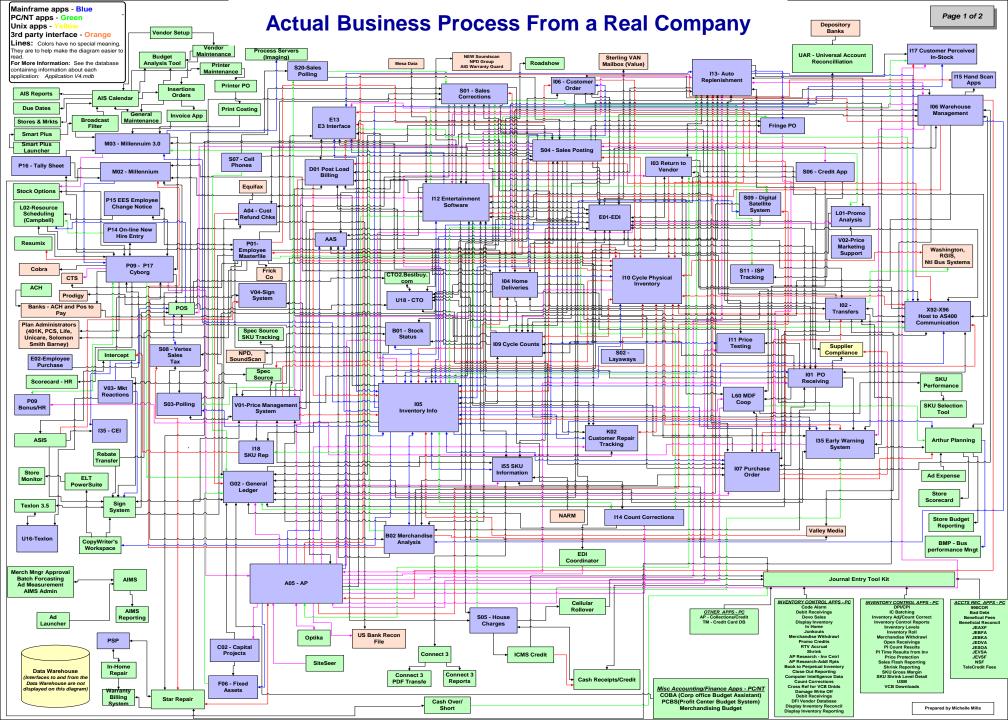
SISCO

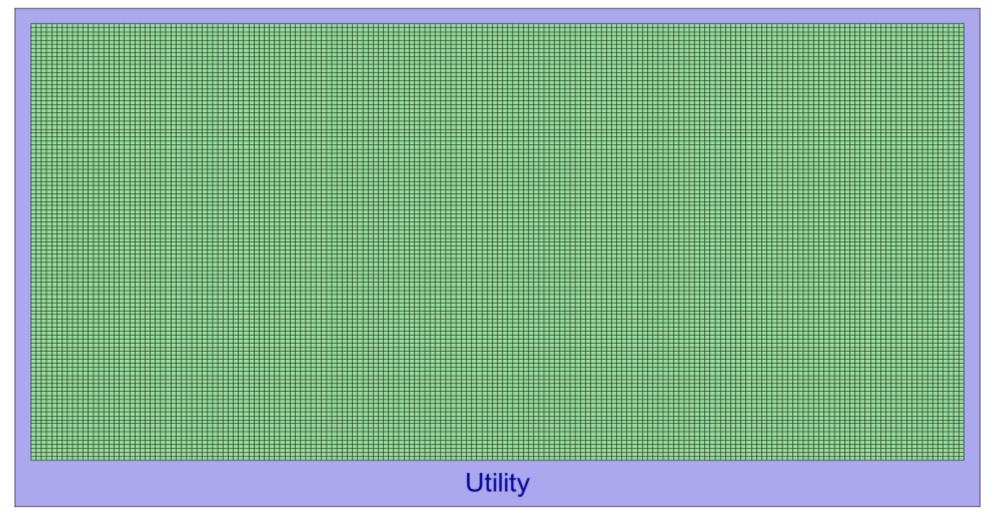

The Intercontrol Center Communications Protocol (ICCP) is an international standard (IEC60870-6 TASE.2) for the real-time exchange of SCADA data between control centers and external organizations like other utilities, power pools, and power plants.




Common Information Model (CIM) is an object-oriented information model of the power system

The Legacy Data Model Has Always Worked


Why do I want the "complexity" of the CIM and all this modeling stuff? Tags are simple!


The Problem to be Solved?

A "one-off" point to point link will always be cheaper if the cost to integrate in the future is ignored.

Scale The Legacy Data Model Up to the Smart Grid

If it takes 15 seconds to configure a tag, it would take 26 man-years to configure 2M meters!

CIM versus IEC 61850: What they define

CIM

- Detailed Power System Topology
- Asset Model
- Consumer and load models
- Financial

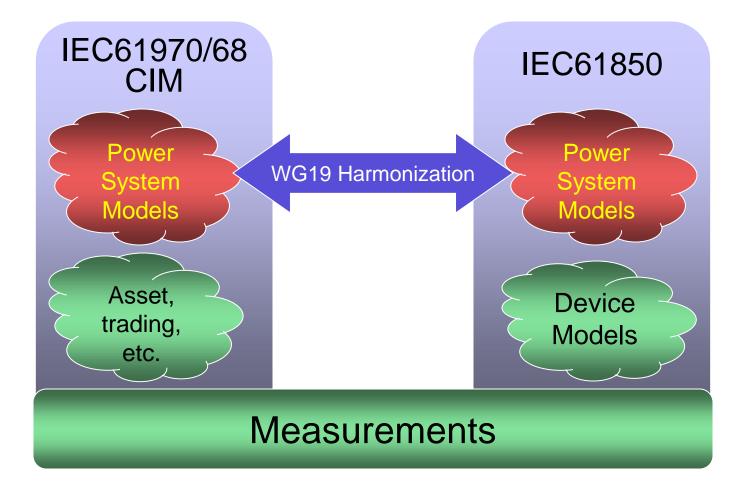
SISCO

- Scheduling and transactions
- Market operations
- Work management
- SCADA and Measurements
- GIS Location
- Business Messaging (WG14)
- Interface Services (GID)

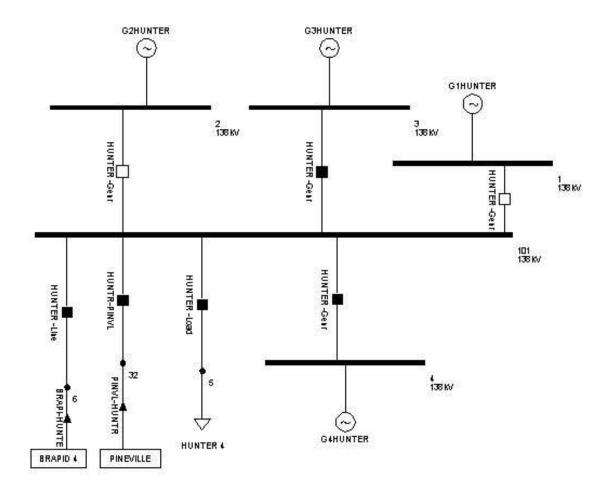
IEC 61850

- Power System Topology Model
- Device Configuration Description
- Device Models
- Service Models
 - Reporting
 - Controls
 - Protection
- Performance/Requirements
- Object and Data Naming Conventions
- Protocols

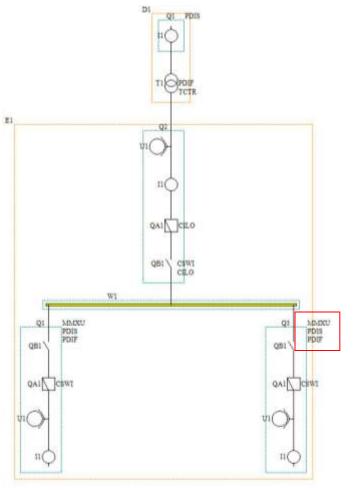
CIM versus IEC 61850: What they define


CIM

IEC 61850

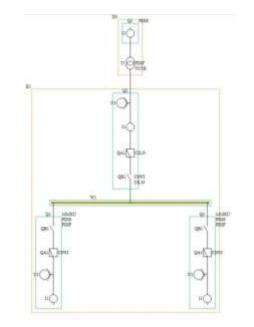

 Detailed Power System Topology 	 Power System Topology Model 					
 Asset Model 	 Device Configuration Description 					
 Consumer and load models 	Device Models					
Financial	 Service Models 					
 Scheduling and transactions 	ReportingControls					
 Market operations 	Protection					
 Work management 	 Performance/Requirements 					
 SCADA and Measurements 	 Object and Data Naming Conventions 					
 GIS – Location 	 Protocols 					
 Business Messaging (WG14) 						

• Interface Services (GID)


CIM Asset-Power System Models & IEC 61850 Device Models

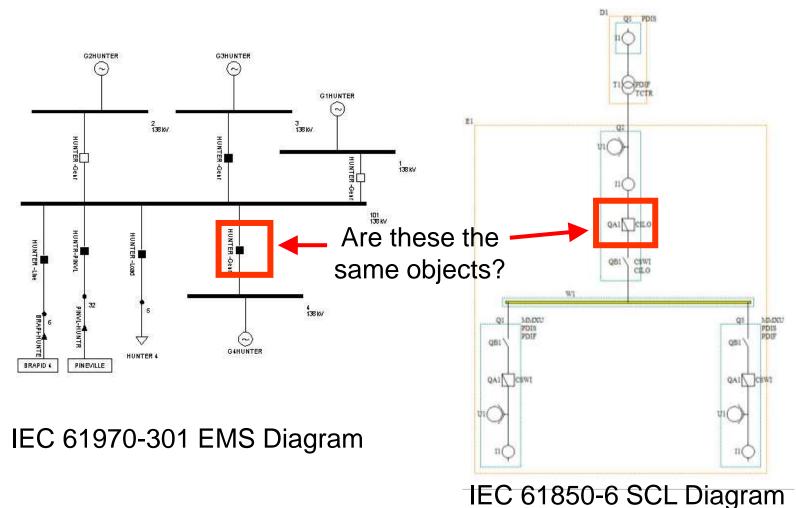
CIM Based Modeling Tool

IEC 61850 Based Modeling Tool (SCL)

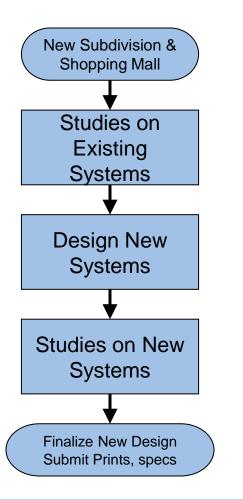


Logical Node Designators

Two Different Purposes – Two Solutions are OK, BUT

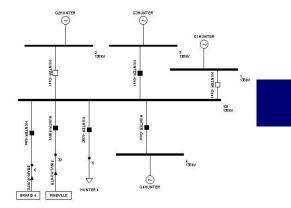


- Detailed system wide description
- Model exchange for high-level systems Power flow, state estimation, etc.
- Market operations
- Planning and system design

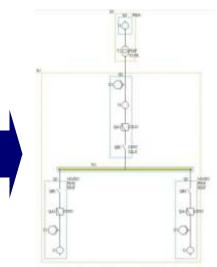

- Substation design and modeling
- Device configuration management Protection and device control
- SCADA, protection, & control data exchange

CIM and IEC 61850 Difference in Topology

Simplified Planning Process


 Well defined processes and tools for designing new power system extensions, simulating their impact, defining new contingencies, etc.

Moving Design to Operations


- CIM has improved the ability to move models from planning to operations (and vice-a-versa) in a multivendor environment.
 - To be expected through use of standards.
 - Eventually enable wide exchange of planning models like ENTSO-E
- EMS and planning already use a set of tools that have been harmonized to enable the flow of information between them.

Moving Design to Substations

Substation engineers use a completely different set of tools supporting a completely different set of standards to define the substation automation and protection systems.

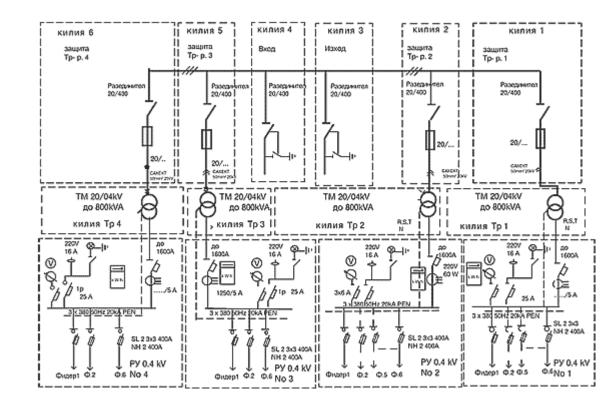
It's About Productivity

- The effort and knowledge put into the planning and operations models that isn't embodied in the one-line diagrams is lost and has to be transferred manually into the substation design through the engineering process duplicating previous effort.
- If the tools used a common set of standards the flow of information can be automated enabling topology, SCADA, protection, communications, settings, etc. to be preserved and leveraged through the engineering process.

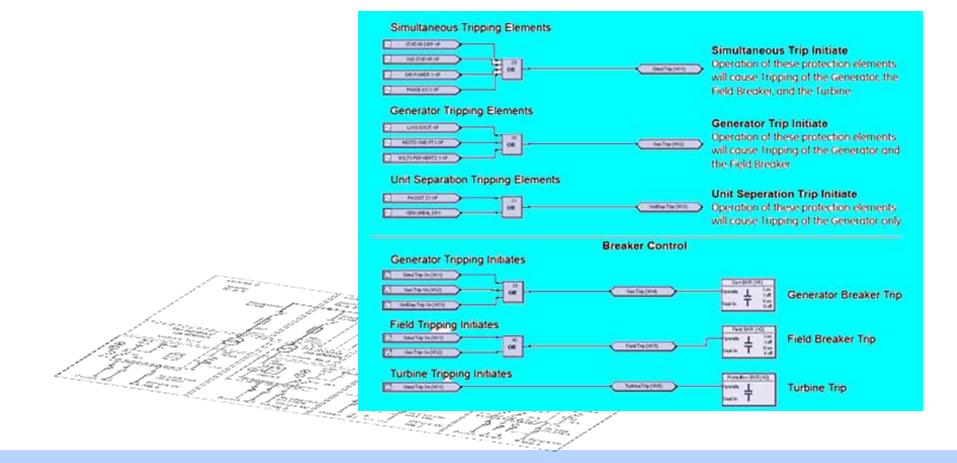
The Standards Based Integration Company

Systems Integration Specialists Company, Inc.

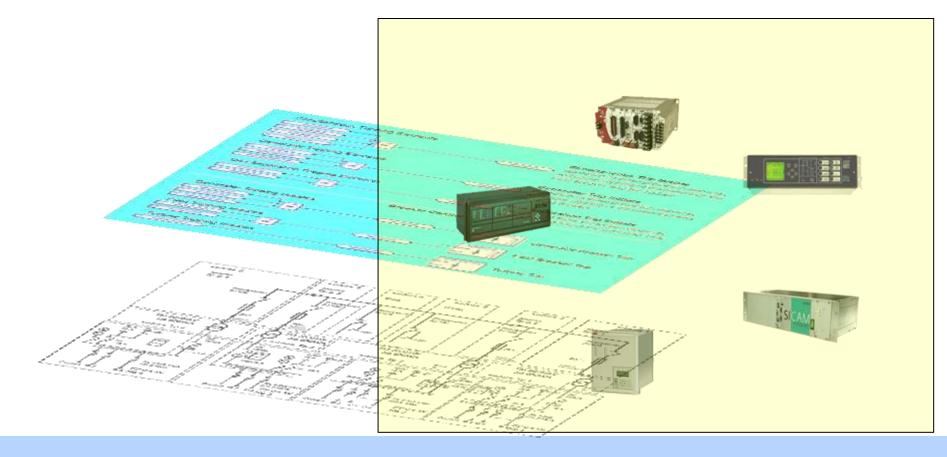
The Engineering Process of IEC 61850-4

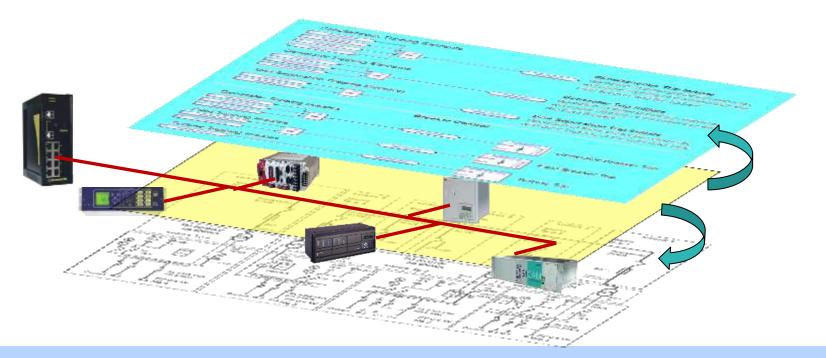

Beyond the protocol to dramatically improve the effectiveness of designing, building and testing power automation systems.

SISCO

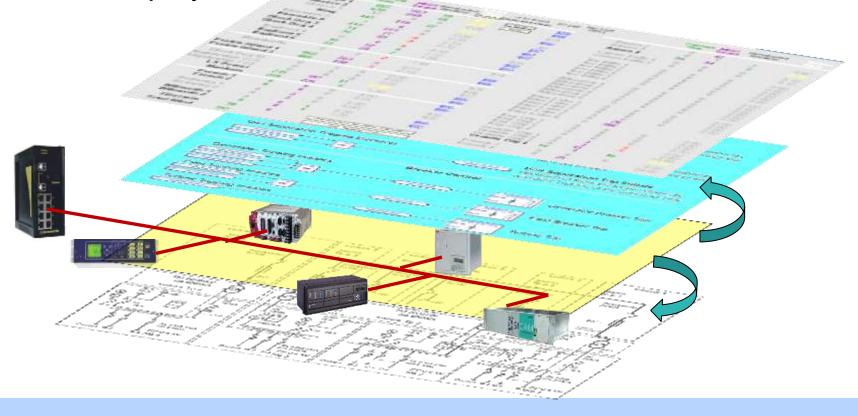

Why is IEC 61850 Different?

If adapted fully from engineering to operations, IEC 61850 (and the model-driven) approach is a new process for power system automation and engineering that is designed to dramatically improve the productivity of engineering, implementation, and maintenance of power automation systems.

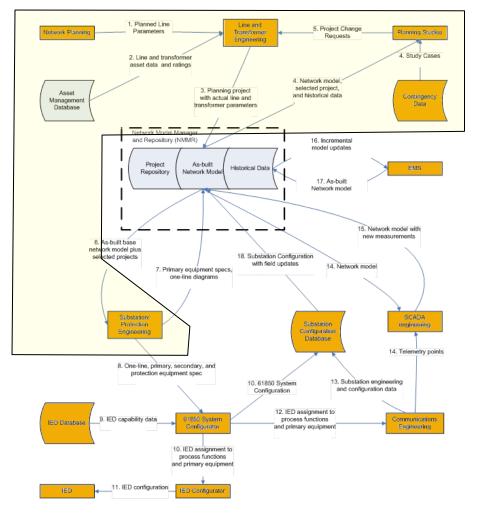

It starts with a power system design


The automation and protection functions are defined

IEDs are selected and configuration and programming is defined

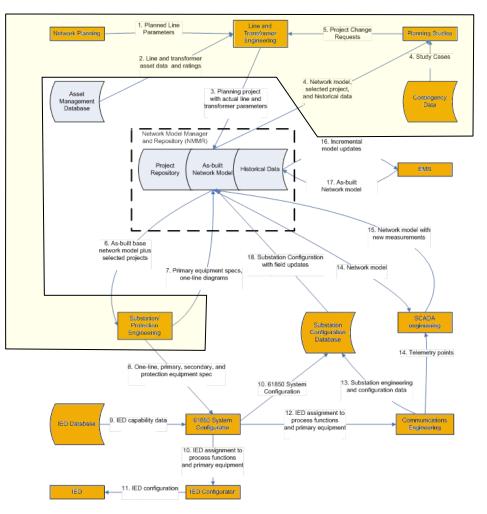

The IEDs are tied together via the network to integrate the power system automation and protection functions

Monitoring and visualization enables control of the power system

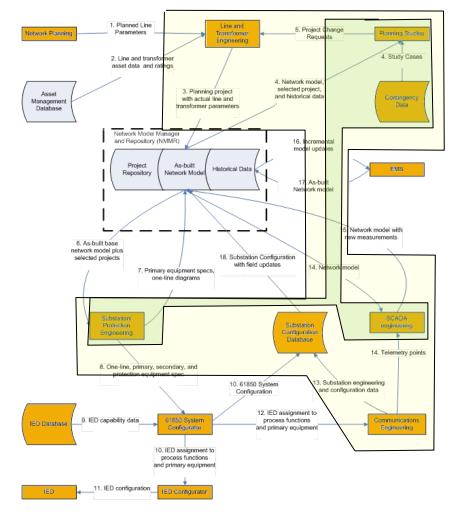

		Case a seried	Largest	100	-	off M Strend () phase of the strengt	CLASS PROPERTY		Concept.	Manual Instant	Sector.	Broaten. Maren
	Sheers 1 Sheers 2 Sheers 2	682 638 U	640 653	種種目			No.	Rameni 2 Kanoni 3 Ramen 4	10	- 日 	-1	4.90
	King	415	418	17			100	Canon Falls 1	-0-	1	-	9.10
	Elementale 2 Elementale 2	211	311	- 0 - 0			100	Canon Falls 3 Inv Hills 1		-	8	0.100
	Slack Deg 3 Slack Deg 4	刑務	百柄	普通	-8.53 -9.72		醫	have Hiller J. Inco Hiller J. Inco Hiller J.	000	新教室	10 10 10	0.00 0.00 0.00
	Replaced I Baptrend S	*	11 12		4.40		12	Inco Hillin 17 Inco Hillin 16	0.0	10	8	0.00
	Bayloant 6 Montheat Ba	15	29	2	1.59		109	Wetalite 1 Wetalite 2 Wetalite 3	100	日期日	0.0	0.00
e -	Faalsie Island 1 Faalsie Island 2	562 499	580 499	1	-013 -019		MA MA	Wexative 3 Wexative 3 Wexative 4	200	No. of Street, or Stre	000	8100 8100 8100 8100 8100 8100
	Ellack Deg St. Rightleidige - CCT Highleidige - CCT	0.00	5 8 9	-10 H	-0.35 1.00 0.00		転転 転転 相打	Elling Loke 17 Elling Loke 27 Elling Loke 37 Elling Loke 4	0000		0.000	6888 8888
	LS Power Manhatin	245	1907	11	12.2803		255 200	Else Labe I Else Labe R	4	1		
	French 1 French 2	1	1	10 10 10	-1.00		900- 1995	Kay Day 3 Kay Day 2 Kay Day 3	准查 查	-	0.00	8 00 8 00 8 00
	Redwing 1 Redwing 2	-	3	~ 中	11.00 11.00		116 835	East City 4 Casalite City 1 Casalite City 2	9	1	1	100 200
	Wilmants 1 Wilmants 2	2	16 18	1	1.29		196 955	Gaussille City I Gaussille City I	-10	ÿ	10	10.00
An set of the set of t	Fibermin Total Mind	58 1907			-	el Nevelos I des Dependicións		French 2 Franch A	-	-	0	-0.00 -24.00
					2000	/						

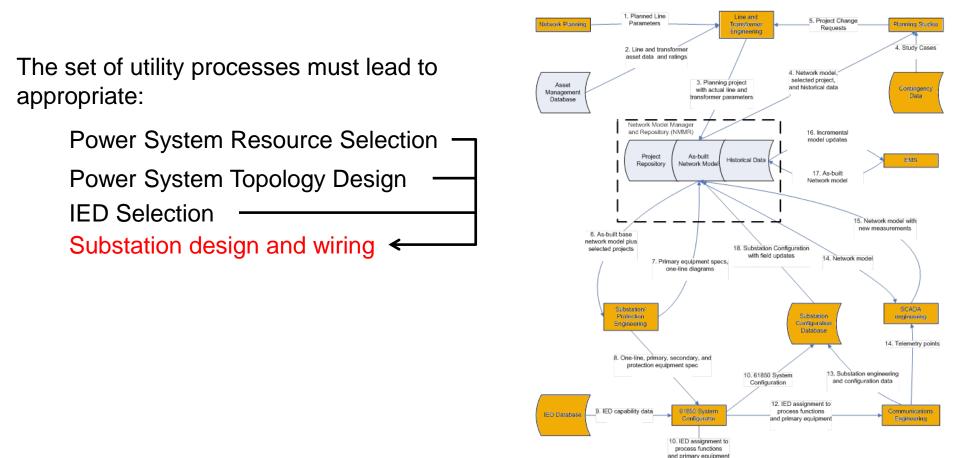
The IEC 61850 addresses all aspects of the engineering process that need to be successfully planned, designed, and deployed.

The set of utility processes must lead to appropriate:


Power System Resource Selection

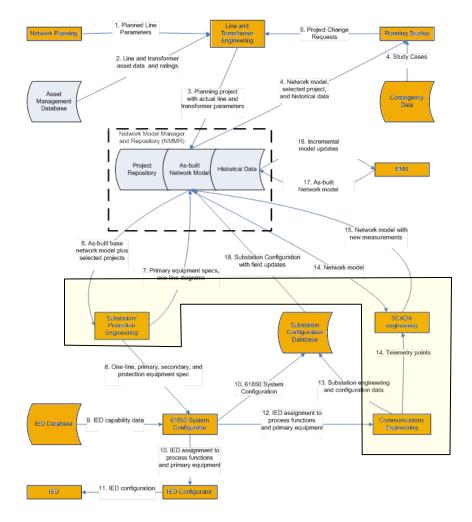
S


The set of utility processes must lead to appropriate:

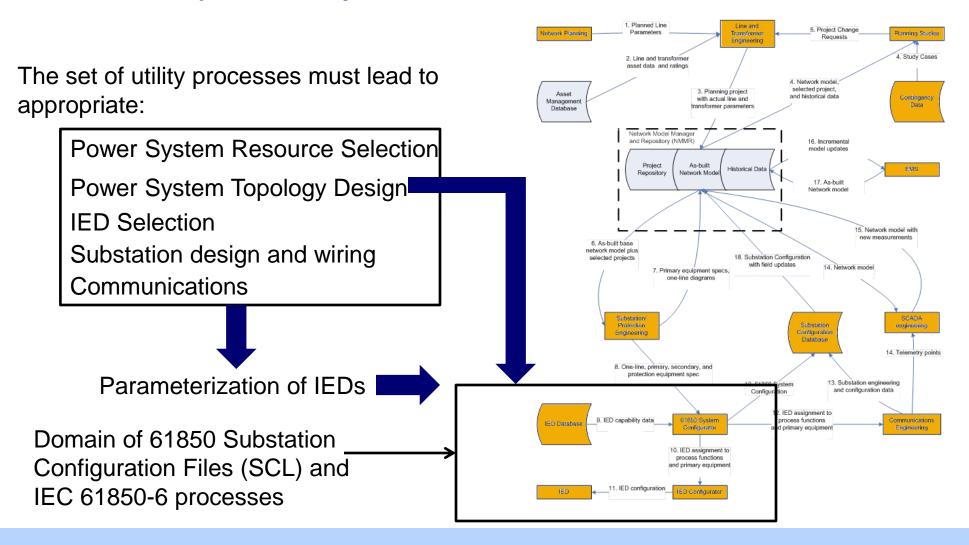

Power System Resource Selection Power System Topology Design Generates One-lines Rating Information

The set of utility processes must lead to appropriate:

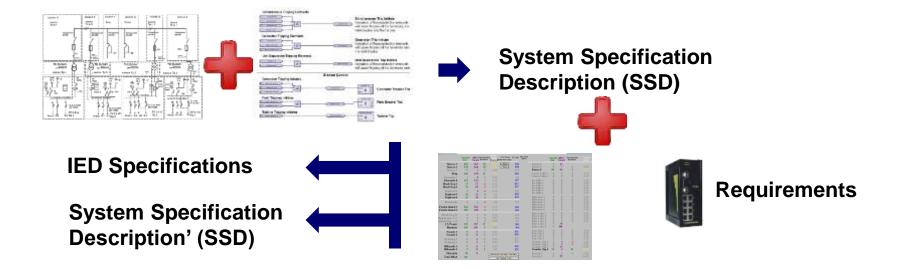
Power System Resource Selection Power System Topology Design IED Selection Automation and Protection Logic

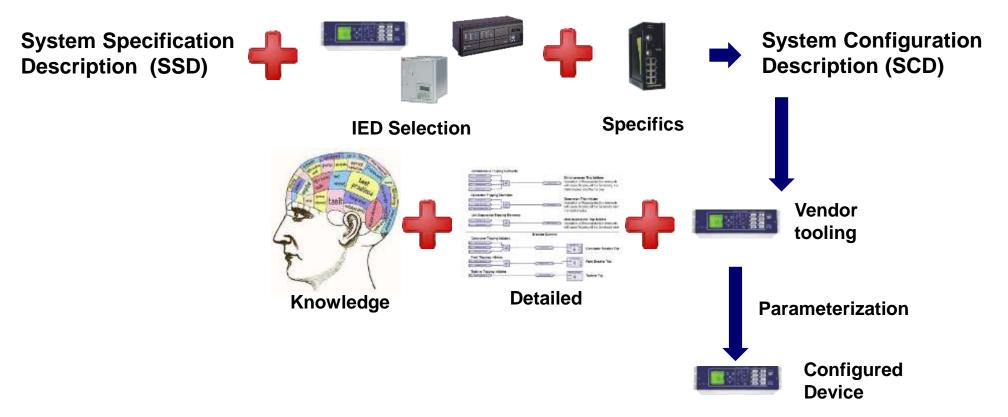


11. IED configuration

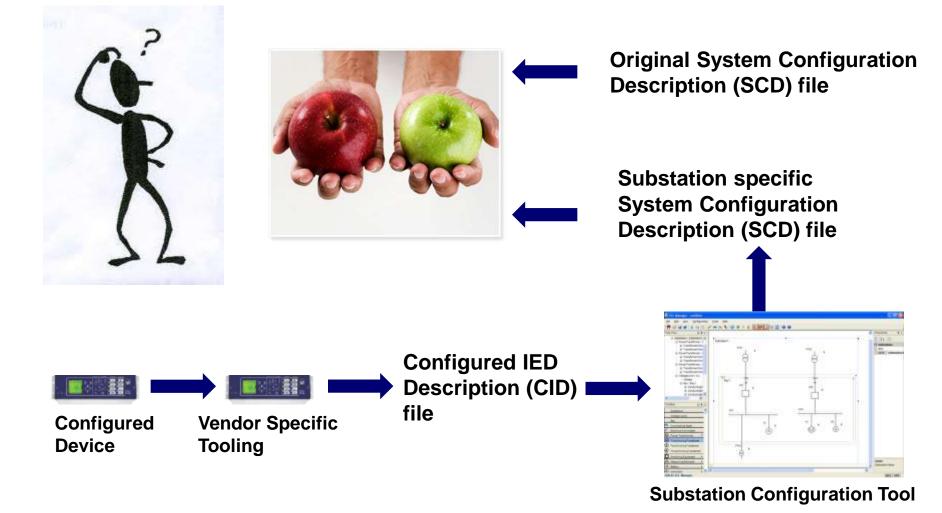

IED Configurator

The set of utility processes must lead to appropriate:

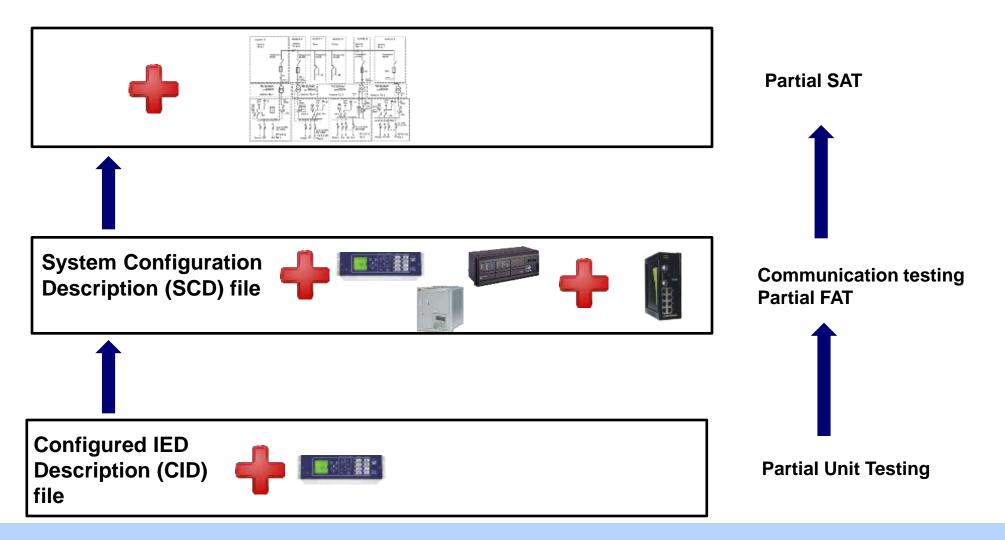

Power System Resource Selection Power System Topology Design IED Selection Substation design and wiring Communications


ISCO

SCL facilitates specification



SCL facilitates design and engineering

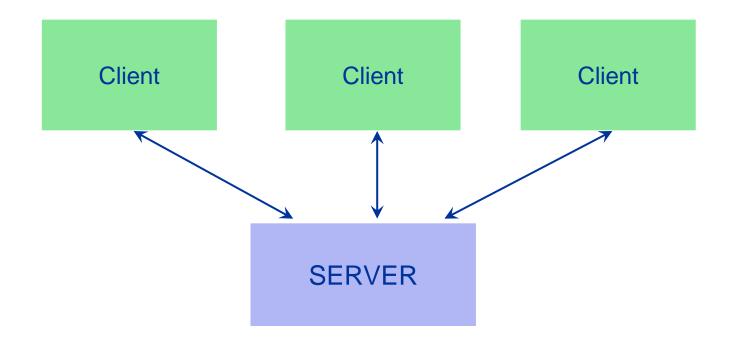


SCL facilitates validation

SCL facilitates testing

The Standards Based Integration Company

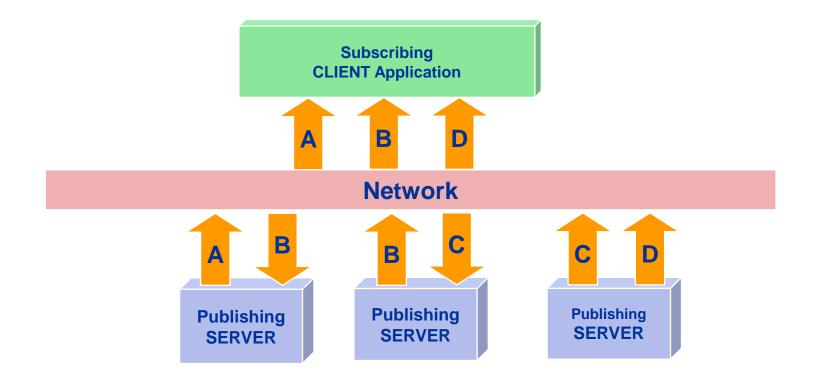
Systems Integration Specialists Company, Inc.


IEC 61850 Profiles

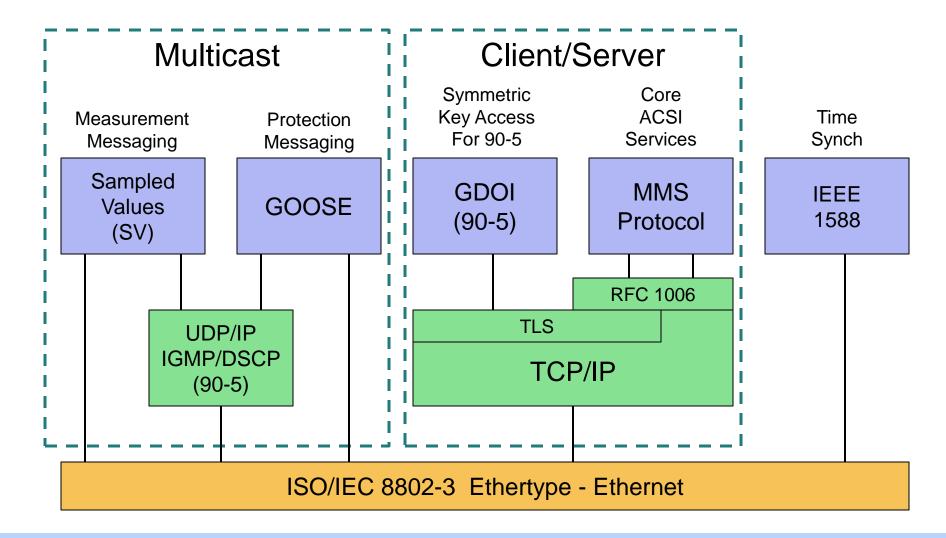
How IEC 61850 Works Over Networks.

Some Terms

- Network Access Methods:
 - Master Slave a master controls slave access to the network (e.g. DNP3)
 - Peer-to-peer any entity may send data to any other peer entity on the network without having to coordinate with a master (TCP/IP-Ethernet).
- Client-Server defines roles between 2 peers that communicate directly with just each other on a network.
- Multicast A server with data publishes data to the network which delivers the data to subscribing clients without requiring knowledge of the clients to the publishing server.

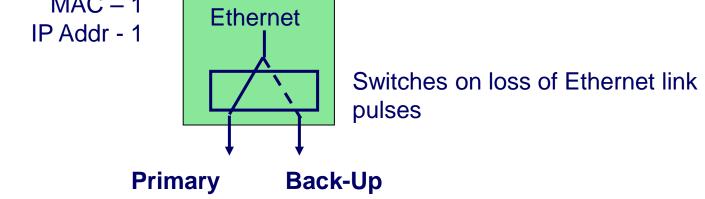

IEC 61850 Client/Server Communications

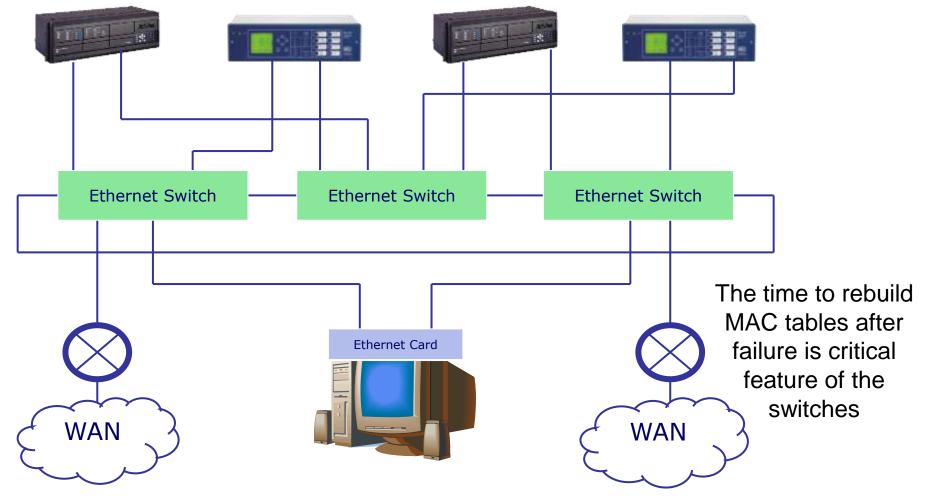
Peer – to – Peer communications. Either entity may initiate communications to the other entity.



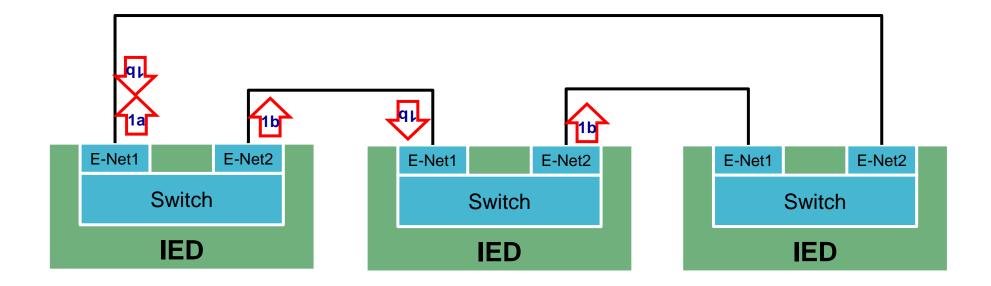
Multi-Cast Application Association

Service: send Data (unconfirmed)

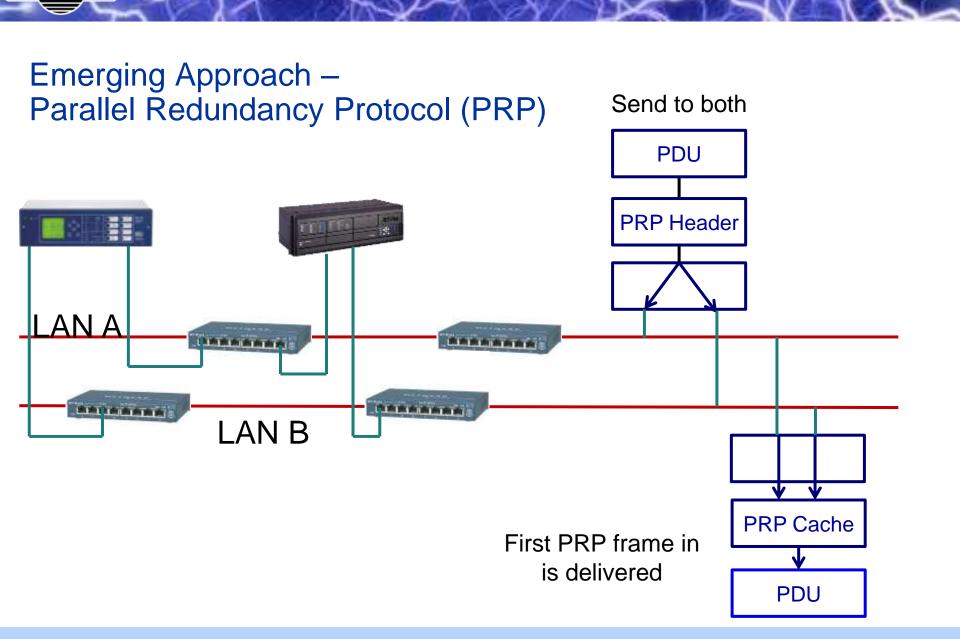

IEC 61850 Profiles


 $\begin{array}{c|c} MAC - 1 \\ IP Addr - 1 \end{array} \qquad \begin{array}{c} \textbf{Ethernet1} \\ \textbf{IP Addr - 1} \end{array} \qquad \begin{array}{c} \textbf{Ethernet2} \\ \textbf{IP Addr - 2} \\ \textbf{IP Addr - 2} \end{array}$ $\begin{array}{c} \textbf{MAC} - 2 \\ IP Addr - 2 \\ \textbf{IP Addr - 2} \end{array}$ $\begin{array}{c} \textbf{MAC} - 1 \\ IP Addr - 1 \end{array} \qquad \begin{array}{c} \textbf{Ethernet} \\ \textbf{IP Addr - 1} \end{array}$

Redundant Media is Common - Easy to Configure for Redundancy

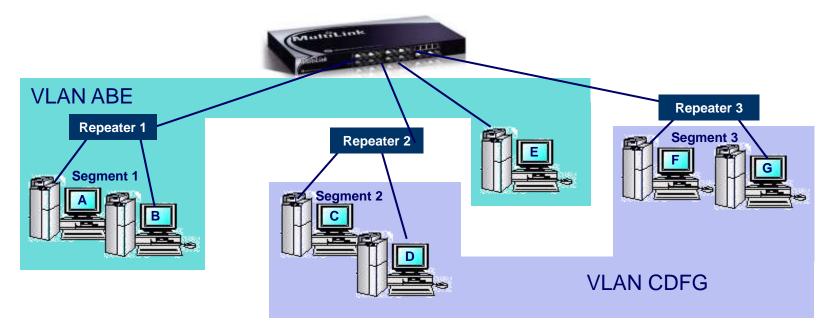


Redundant Network Configuration

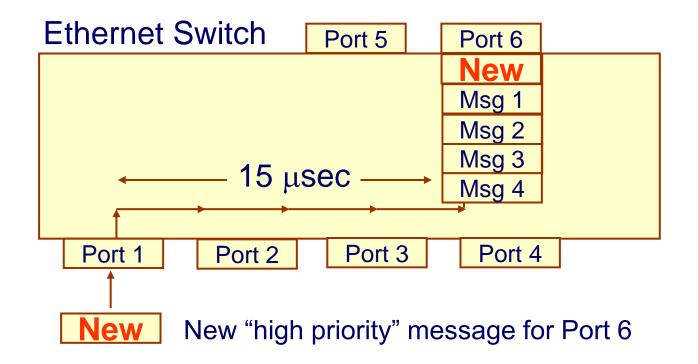


Rapid Spanning Tree Protocol (RSTP) enables network rebuild after MAC failure/change

Emerging Approach – Embedded Switching



HSR – High-Speed Redundancy Ethernet uses this kind of approach to avoid the delay of rebuilding the MAC tables on a failure

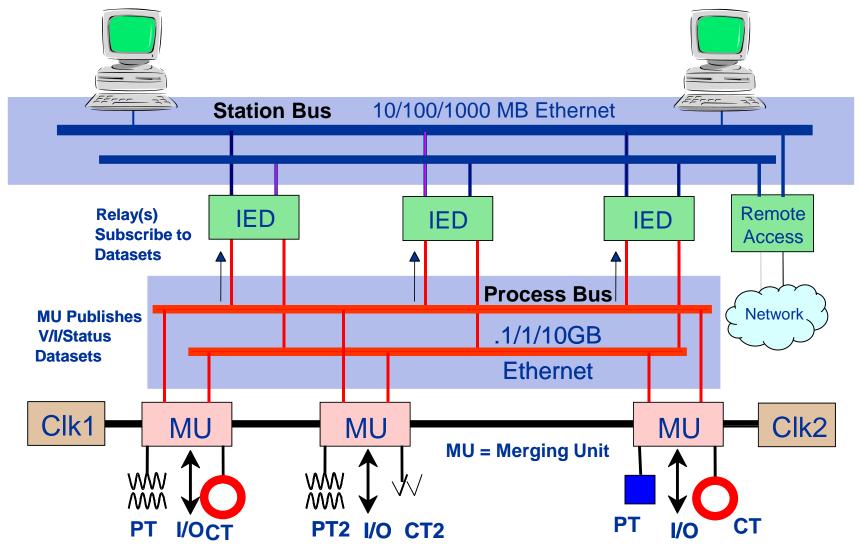

VLANs

- VLANs: Are logical groupings of nodes that reside in a common broadcast domain
 - Virtual because the VLAN is artificially created and the nodes need not be physically located on the same switch or even reside in the same building, but
 - Nodes that are members behave like they are connected together by one layer 2 bridge or switch
 - □ A router is required to communicate between the two VLANs

Ethernet Priority

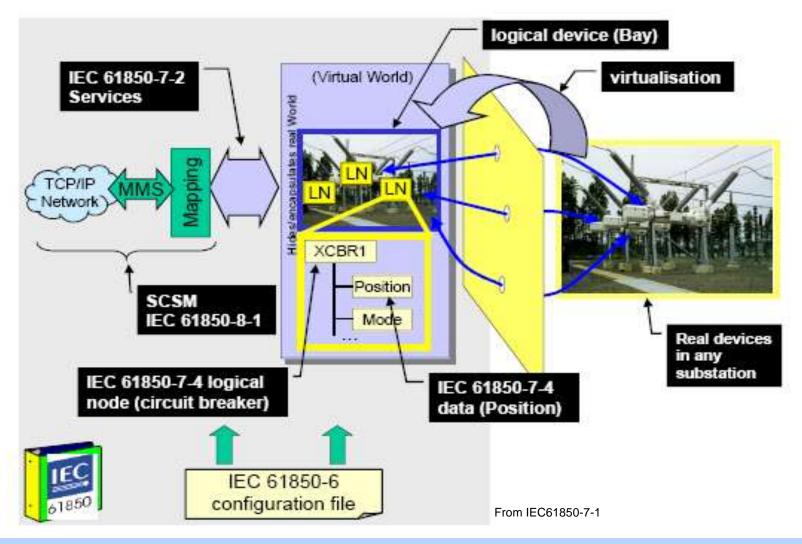
- Ethernet 802.1q provides a priority setting
- "High" priority messages are moved to the priority queue
- Specified in IEC GOOSE and Implemented in GE Multilink Switch

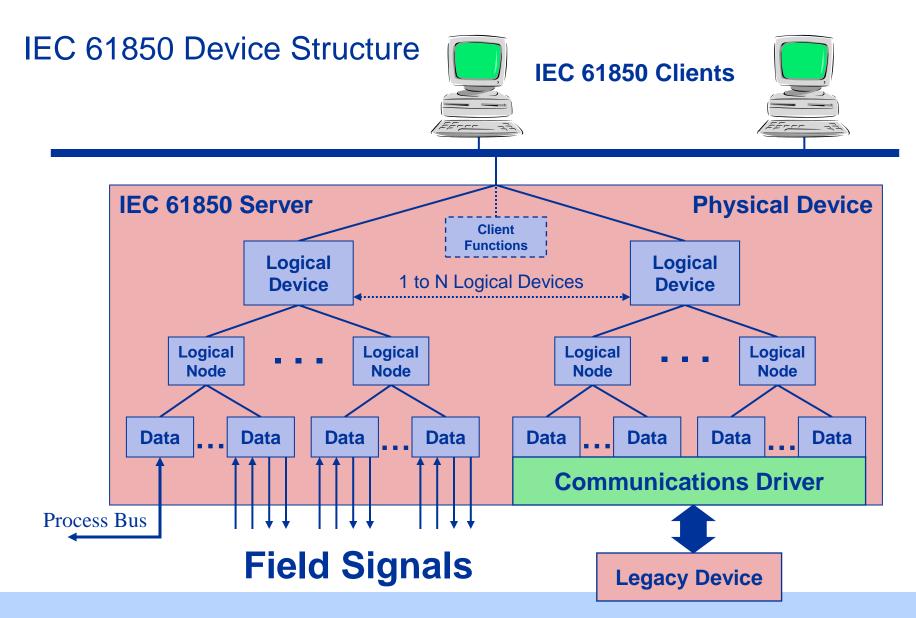
The Standards Based Integration Company


Systems Integration Specialists Company, Inc.

IEC 61850 Models

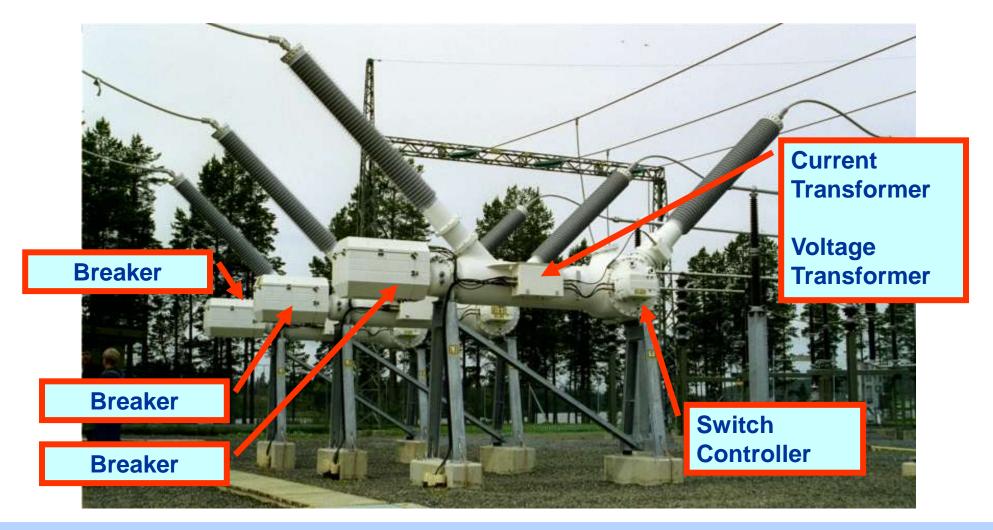
IEC61850 Substation Architecture




IEC61850 – Communications Parts

- Part 6: Substation Configuration Language (SCL)
- Part 7-2: Abstract Communications Service Interface (ACSI) and base types
- Part 7-3: Common Data Classes (CDC)
- Part 7-4: Logical Nodes (LN)
- Part 7-4XX: Other LNs and CDCs
- Part 8-1: Specific Communications Service Mappings (SCSM) MMS & Ethernet
- Part 9-2: SCSM Sampled Values over Ethernet
- Part 10: Conformance Testing

IEC 61850 Virtual Model



Logical Node

- A named grouping of data and associated services that is logically related to some power system function.
- Consists of one or more attributes each of a type defined by a Common Data Class (CDC)

Examples of Logical Nodes

Common Data Classes (CDC)

- Defines structure for common types that are used to describe DATA objects.
- CDC are complex objects built on predefined simple base types organized into functional constraints (FC)
- Examples:

- □ Single point status (SPS) on/off
- Double point status (DPS) on/off/transient
- Double point controllable (DPC) state can be changed via controls

Common Data Classes - Status

Name	Description
SPS	Single Point Status
DPS	Double Point Status
INS	Integer Status
ENS	Enumerated Status
АСТ	Protection Activation
ACD	Directional Protection Activation Info.
SEC	Security Violation Counting
BCR	Binary Counter Reading
HST	Histogram
VSS	Visible String Status

Common Data Classes - Measurands

Name	Description
MV	Measured Value
CMV	Complex Measured Value
SAV	Sampled Value
WYE	Phase to ground measured values for 3-phase system
DEL	Phase to phase measured values for 3-phase system
SEQ	Sequence
HMV	Harmonic value
HWYE	Harmonic value for WYE
HDEL	Harmonic value for DEL

Common Data Classes - Controls

Name	Description
SPC	Controllable Single Point
DPC	Controllable Double Point
INC	Controllable Integer Status
ENC	Controllable Enumerated Status
BSC	Binary Controlled Step Position Info.
ISC	Integer Controlled Step Position Info.
APC	Controllable Analogue Process Value
BAC	Binary Controlled Analog Process Value

Common Data Classes – Settings and Descriptions

Name	Description
SPG	Single Point Setting
ING	Integer Status Setting
ENG	Enumerated Status Setting
ORG	Object Reference Setting
TSG	Time Setting Group
CUG	Currency Setting Group
VSG	Visible String Setting
ASG	Analogue Setting
CURVE	Setting Curve
CSG	Curve Shape Setting
DPL	Device Name Plate
LPL	Logical Node Name Plate
CSD	Curve Shape Description

Single Point Status (SPS)

SPS class					
Data Attribute name	Туре	FC	TrgOp	Value/Value range	M/O/C
DataName	Inherited from GenDat IEC 61850-7-2)	aObject (Class or f	rom GenSubDataObject Class (see	
DataAttribut	e				
				status	
stVal	BOOLEAN	ST	dchg	TRUE FALSE	М
q	Quality	ST	qchg		М
t	TimeStamp	ST			М
		5	substituti	on and blocked	
subEna	BOOLEAN	SV			PICS_SUBST
subVal	BOOLEAN	SV		TRUE FALSE	PICS_SUBST
subQ	Quality	SV			PICS_SUBST
subID	VISIBLE STRING64	SV			PICS_SUBST
blkEna	BOOLEAN	BL			0
		configura	ation, des	scription and extension	
d	VISIBLE STRING255	DC		Text	0
dU	UNICODE STRING255	DC			0
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M
dataNs	VISIBLE STRING255	EX			AC_DLN_M
Attribut Name	Туре F	unctiona Constrain		gger Range of tions Values	Mandatory/ Optional

Functional Constraints

- There are many data attributes in an object like a breaker that have related use:
 - Control, configuration, measurement, reporting, etc.
- Functional Constraints (FC) is a property of a data attribute that characterizes the specific use of the attribute.
- Useful to functionally organize data attributes to provide structure and context.

SISCO

Mandatory/Optional Parameters

- Specifies whether a data attribute is mandatory (M) or optional (O) and under what conditions.
 - PICS_XXXX: Specifies an ACSI service model (e.g. SUBST = Substitution) that if supported then it is mandatory.
 - AC_xxx specifies if the name space differs from that specified for higher-level objects (e.g. private extensions

Double Point Status (DPS)

DPS class							
Data Attribute name	Туре	FC	TrgOp	Value/Value range	M/O/C		
DataName	Inherited from GenData IEC 61850-7-2)	aObject (Class or f	rom GenSubDataObject Class (see			
DataAttribut	te						
		1		status			
stVal	CODED ENUM	ST	dchg	intermediate-state off on bad-state	М		
q	Quality	ST	qchg		М		
t	TimeStamp	Τ			М		
			substituti	on and blocked			
subEna	BOOLEAN	SV			PICS_SUBST		
subVal	CODED ENUM	SV		intermediate-state off on bad-state	PICS_SUBST		
subQ	Quality	SV	\mathbf{N}		PICS_SUBST		
subID	VISIBLE STRING64	SV			PICS_SUBST		
blkEna	BOOLEAN	BL			0		
		configur	ation, des	scription and extension			
d	VISIBLE STRING255	DC		Text	0		
dU	UNICODE STRING255	DC			0		
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M		
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M		
dataNs	VISIBLE STRING255	EX			AC_DLN_M		

2-bit pair in DPS versus boolean in SPS

Controllable Double Point – DPC

DPC class Attribute	Attribute Tune	FC	TraOn	Value/Value Range	M/O/C	1			
Name	Attribute Type	FC	TrgOp	value/value Range	M/0/C				
DataName	Inherited from Data Cla	Mandatory							
DataAttribut	DataAttribute From IEC61850-7-3								
			control a	and status		control is			
ctlVal	BOOLEAN	co		off (FALSE) on (TRUE)	AC_CO_M	supported			
operTm	TimeStamp	CO			AC_CO_O]]			
origin	Originator	CO, ST			AC_CO_O] >4			
ctlNum	INT8U	CO, ST		0255	AC_CO_O				
stVal	CODED ENUM	ST	dchg	intermediate-state off on bad-state	м]			
q	Quality	ST	qchg		М				
t	TimeStamp	ST			м				
stSeld	BOOLEAN	ST	dchg		AC_CO_O	Optional if			
			subs	titution		control is			
subEna	BOOLEAN	SV			PICS_SUBST	supported			
subVal	CODED ENUM	SV		intermediate-state off on bad-state	PICS_SUBST				
subQ	Quality	SV			PICS_SUBST] /			
subID	VISIBLE STRING64	SV			PICS_SUBST				
	•	configura	tion, desc	ription and extension	•				
pulseConfig	PulseConfig	CF			AC_CO_O] /			
ctlModel	CtlModels	CF			м				
sboTimeout	INT32U	CF			AC_CO_O	×			
sboClass	SboClasses	CF			AC_CO_O				
d	VISIBLE STRING255	DC		Text	0				
d∪	UNICODE STRING255	DC			0				
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M]			
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M]			
dataNs	VISIBLE STRING255	EX			AC_DLN_M				

Direct or SBO

Control Model (ctlModel)

- 0: Status only. No control allowed.
- 1: Direct control with normal security
- 2: SBO control with normal security
- 3: Direct control with enhanced security
- 4: SBO control with enhanced security

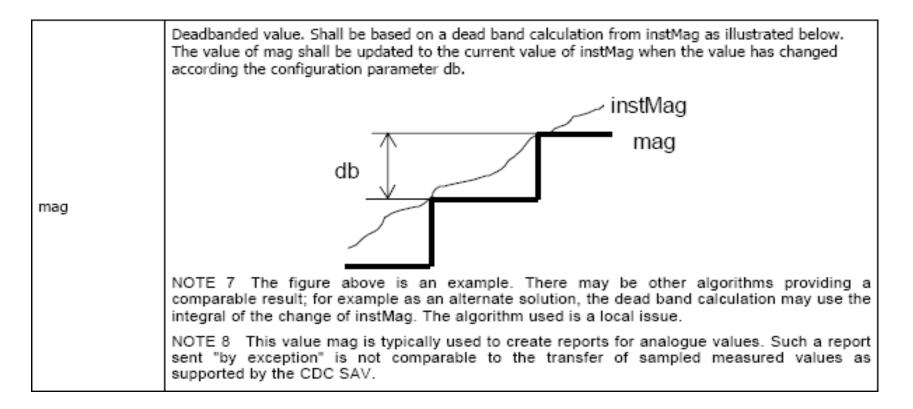
Logical Node Name Plate - LPL

LPL class	LPL class							
Data attribute name	Туре	FC	TrgOp	Value/Value range	M/O/C			
DataName	Inherited from GenDat IEC 61850-7-2)	aObject	Class or f	rom GenSubDataObject Class (see				
DataAttribu	te							
		configur	ation, des	scription and extension				
vendor	VISIBLE STRING255	DC			М			
swRev	VISIBLE STRING255	DC			М			
d	VISIBLE STRING255	DC			0			
dU	UNICODE STRING255	DC			0			
configRev	VISIBLE STRING255	DC			AC_LN0_M			
paramRev	INT32	ST	dchg		0			
valRev	INT32	ST	dchg		0			
ldNs	VISIBLE STRING255	EX		shall be included in LLN0 only; for example "IEC 61850-7-4:2003"	AC_LN0_EX			
InNs	VISIBLE STRING255	EX			AC_DLD_M			
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M			
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M			
dataNs	VISIBLE STRING255	EX			AC_DLN_M			

Configuration Revision Parameters

- configRev Changed whenever at least on semantic aspect of the data has changed within the Logical Device (LD) within which this LLN0 is contained. Left to the "user" (vendor) for other LNs.
 - New LNs

- New attributes.
- paramRev Changed when the value of any editable setting (SE) or setpoint (SP) parameter is changed.
 - If changed via communications or local HMI the value is increased by 1.
 - If changed via SCL import the value is increased by 10,000.
- valRev changed when the value of any configuration (CF) parameter is changed.
 - If changed via communications or local HMI the value is increased by 1.
 - If changed via SCL import the value is increased by 10,000.



Measured Value - MV

MV class					
Data attribute name	Туре	FC	TrgOp	Value/Value range	M/O/C
DataName	Inherited from GenDataO	bject Clas	s or from (GenSubDataObject Class (see IEC 61850-7-2)	
DataAttribu	te				
			measur	ed attributes	
instMag	AnalogueValue	MX			0
mag	AnalogueValue	MX	dchg, dupd		М
range	ENUMERATED	MX	dchg	normal high low high-high low-low	0
q	Quality	MX	qchg		М
t	TimeStamp	MX			М
			substituti	on and blocked	
subEna	BOOLEAN	SV			PICS_SUBST
subMag	AnalogueValue	SV			PICS_SUBST
subQ	Quality	SV			PICS_SUBST
subID	VISIBLE STRING64	SV			PICS_SUBST
blkEna	BOOLEAN	BL			0
		configur	ation, des	scription and extension	
units	Unit	CF	dchg	see Annex A	0
db	INT32U	CF	dchg	0 100 000	0
zeroDb	INT32U	CF	dchg	0 100 000	0
sVC	ScaledValueConfig	CF	dchg		AC_SCAV
rangeC	RangeConfig	CF	dchg		GC_CON_range
smpRate	INT32U	CF	dchg		0
d	VISIBLE STRING255	DC		Text	0
dU	UNICODE STRING255	DC			0
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M
dataNs	VISIBLE STRING255	EX			AC_DLN_M

instMag v.s. mag

SISC

- Use mag in datasets to trigger a report when data changes
- Use instMag in datasets for reporting data without triggering a report

Trigger Option (TrgOp)

Specifies the conditions under which reporting on the data attribute can be triggered.

data-change	BOOLEAN
quality-change	BOOLEAN
data-update	BOOLEAN
integrity	BOOLEAN
general-interrogation	BOOLEAN

Sampled Values (SAV)

SAV class	SAV class							
Data attribute name	Туре	FC	TrgOp	Value/Value range	M/O/C			
DataName	Inherited from GenDataO	oject Class	s or from (GenSubDataObject Class (see IEC 61850-7-2)				
DataAttribu	te				•			
	_		measur	ed attributes				
instMag	AnalogueValue	MX			М			
q	Quality	MX	qchg		М			
t	TimeStamp	MX			0			
		configur	ation, des	scription and extension				
units	Unit	CF	dchg	see Annex A	0			
sVC	ScaledValueConfig	CF	dchg		AC_SCAV			
min	AnalogueValue	CF	dchg		0			
max	AnalogueValue	CF	dchg		0			
d	VISIBLE STRING255	DC		Text	0			
dU	UNICODE STRING255	DC			0			
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M			
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M			
dataNs	VISIBLE STRING255	EX			AC_DLN_M			

WYE Connected Measurements (WYE)

WYE class							
Data attribute name	Туре	FC	TrgOp	Value/Value range	M/O/C		
DataName	Inherited from GenDataOl	bject Clas	s or from (GenSubDataObject Class (see IEC 61850-7-2)			
SubDataObj	ect						
phsA	CMV				GC_1		
phsB	CMV				GC_1		
phsC	CMV				GC_1		
neut	CMV				GC_1		
net	CMV				GC_1		
res	CMV				GC_1		
DataAttribu	te						
		configur	ation, des	scription and extension			
angRef	ENUMERATED	CF	dchg	Va Vb Vc Aa Ab Ac Vab Vbc Vca Vother Aother <mark> Synchrophasor</mark>	0		
phsToNeut	BOOLEAN	CF	dchg	DEFAULT = FALSE	0		
d	VISIBLE STRING255	DC		Text	0		
dU	UNICODE STRING255	DC			0		
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M		
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M		
dataNs	VISIBLE STRING255	EX			AC_DLN_M		

Complex Measured Value (CMV)

Vector = mag

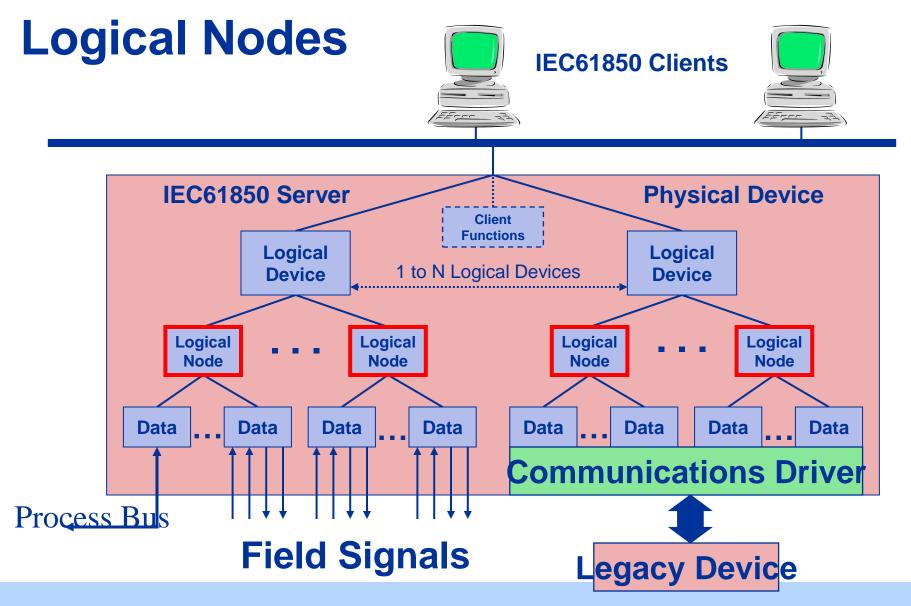
& ang

			meas	ured attributes	
instCVal	Vector	MX			0
cVal	Vector	MX	dchg, dupd		М
range	ENUMERATED	MX	dchg	normal high low high-high low-low	0
rangeAng	ENUMERATED	MX	dchg	normal high low high-high low-low	0
q	Quality	MX	qchg		М
t	TimeStamp	MX			М
			substitu	ition and blocked	
subEna	BOOLEAN	SV			PICS_SUBST
subCVal	Vector	SV			PICS_SUBST
subQ	Quality	SV			PICS_SUBST
subID	VISIBLE STRING64	SV			PICS_SUBST
blkEna	BOOLEAN	BL			0
		config	uration, d	lescription and extension	
units	Unit	CF	dchg	see Annex A	0
db	INT32U	CF	dchg	0 100 000	0
dbAng	INT32U	CF	dchg	0 100 000	0
zeroDb	INT32U	CF	dchg	0 100 000	0
rangeC	RangeConfig	CF	dchg		GC_CON_range
rangeAngC	RangeConfig	CF	dchg		GC_CON_rangeA
magSVC	ScaledValueConfig	CF	dchg		AC_SCAV
angSVC	ScaledValueConfig	CF	dchg		AC_SCAV
angRef	ENUMERATED	CF	dchg	V A other Synchrophasor	0
smpRate	INT32U	CF	dchg		0
d	VISIBLE STRING255	DC		Text	0
dU	UNICODE STRING255	DC			0
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M
dataNs	VISIBLE STRING255	EX			AC_DLN_M

Vector

Vector Type Definition From IEC61850-7-3			
Attribute Name	Attribute Type	Value/Value Range	M/0/C
mag	AnalogueValue		М
ang	AnalogueValue		0

The Standards Based Integration Company


Systems Integration Specialists Company, Inc.

Logical Nodes

Abstract Representation of a Power System Function

System Logical Nodes "L"

Name	Description
LPHD	Physical Device
LLNO	Common Logical Node MANDATORY
LCCH	Physical Communications Channel Supervision
LGOS	GOOSE Subscription
LTIM	Time Management
LTMS	Time Master Supervision
LTRK	Service Tracking

Automatic Control Logical Nodes "A"

Name	Description
ANCR	Neutral Current Regulator
ARCO	Reactive Power Control
ARIS	Resistor Control
ATCC	Automatic Tap Changer controller
AVCO	Voltage Control

Supervisory Control Logical Nodes "C"

Name	Description
CALH	Alarm Handling
CCGR	Cooling Group Control
CILO	Interlocking
CPOW	Point-on-wave switching
CSWI	Switch Controller
CSYN	Synchronizer Controller

Functional Block Logical Nodes "F"

Name	Description
FCNT	Counter
FCSD	Curve Shape Description
FFIL	Generic Filter
FLIM	Control Function Output Limitation
FPID	PID Regulator
FRMP	Ramp Function
FSPT	Set-Point Control Function
FXOT	Action at Over Threshold
FXUT	Action at Under Threshold

Generic Function Logical Nodes "G"

Name	Description
GAPC	Generic Automatic Process Control
GGIO	Generic Process I/O
GLOG	Generic Log
GSAL	Generic Security Application

Use only when there is no other power system related LN that can represent the data.

Interfacing and Archiving Logical Nodes "I"

Name	Description
IARC	Archiving
IHMI	Human Machine Interface
ITCI	Telecontrol Interface
ІТМІ	Telemonitoring Interface
ISAF	Safety Alarm Function
ITPC	Teleprotection Communications Interface

Mechanical and Non-Electrical Logical Nodes "K"

Name	Description
KFAN	Fan
KFIL	Filter
KPMP	Pump
KTNK	Tank
KVLV	Valve Control

Metering and Measurement Logical Nodes "M"

Name	Description
MHAI	Harmonics or interharmonics
MHAN	Non phase related harmonics or interharmonics
MMTR	Metering
MMXN	Non phase related measurements
MMXU	Measurements
MSQI	Sequence and Imbalance
MSTA	Metering Statistics
MENV	Environmental Information
MFLK	Flicker Measurement
MHYD	Hydrological Information
MMDS	DC Measurement
MMET	Metrological Information

Protection Logical Nodes "P"

Name	Description
PDIF	Differential
PDIR	Direction
PDIS	Distance
PDOP	Directional overpower
PDUP	Directional underpower
PFRC	Rate of change of frequency
PHAR	Harmonic restraint
PHIZ	Ground detector
PIOC	Instantaneous overcurrent
PMRI	Motor restart inhibition
PMSS	Motor starting time supervision
POPF	Over power factor
PPAM	Phase angle measuring

Protection Logical Nodes (cont'd)

Name	Description
PSCH	Protection scheme
PSDE	Sensitive directional earth fault
PTEF	Transient earth fault
PTOC	Time over current
PTOF	Over frequency
ΡΤΟΥ	Over voltage
PTRC	Protection trip conditioning
PTTR	Thermal overload
PTUC	Under current
PTUV	Under voltage
PVOC	Voltage controlled time over current
PVPH	Volts per Hz
PZSU	Zero speed or under speed

Protection Logical Nodes (cont'd)

Name	Description
PRTR	Rotor Protection
PTHF	Thyristor Protection
PUPF	Underpower Factor Protection

Power Quality Events Logical Nodes "Q"

Name	Description
QFVR	Frequency Variation
QITR	Current Transient
QIUB	Current Unbalance Variation
QVTR	Voltage Transient
QVUB	Voltage Unbalance Variation
QVVR	Voltage Variation

Protection Related Logical Nodes "R"

Name	Description
RDRE	Disturbance recorder function
RADR	Disturbance recorder channel analogue
RBDR	Disturbance recorder channel binary
RDRS	Disturbance record handling
RBRF	Breaker failure
RDIR	Directional element
RFLO	Fault locator
RPSB	Power swing detection/blocking
RREC	Auto reclosing
RSYN	Synchronism-check or synchronising
RMXU	Differential Measurements

Sensors and Monitoring Logical Nodes "S"

Name	Description
SARC	Monitoring and diagnostics for arcs
SIMG	Insulation medium supervision
SIML	Insulation medium supervision (liquid)
SPDC	Monitoring and diag. for partial discharges
SCBR	Circuit Breaker Supervision
SLTC	Tap Changer Supervision
SOPM	Supervision of Operating Mechanism
SPTR	Power Transformer Supervision
SSWI	Circuit Switch Supervision
STMP	Temperature Supervision
SVBR	Vibration Supervision

Instrument Transformer Logical Nodes "T"

Name	Description
TCTR	Current transformer
TVTR	Voltage transformer
TANG	Angle
TAXD	Axial Displacement
TDST	Distance
TFLW	Liquid Flow
TFRQ	Frequency
TGSN	Generic Sensor
THUM	Humidity
TLVL	LMedia Level

Instrument Transformer Logical Nodes (cont'd)

Name	Description
TMGF	Magnetic Field
ΤΜ٧Μ	Movement Sensor
TPOS	Position Indicator
TPRS	Pressure Sensor
TRTN	Rotation Transmitter
TSND	Sound Pressure Sensor
ТТМР	Temperature Sensor
TTNS	Mechanical Tension/stress
TVBR	Virbration Sensor
TWPH	Water Acidity

Switchgear Logical Nodes "X"

Name	Description
XCBR	Circuit Breaker
XSWI	Circuit Switch

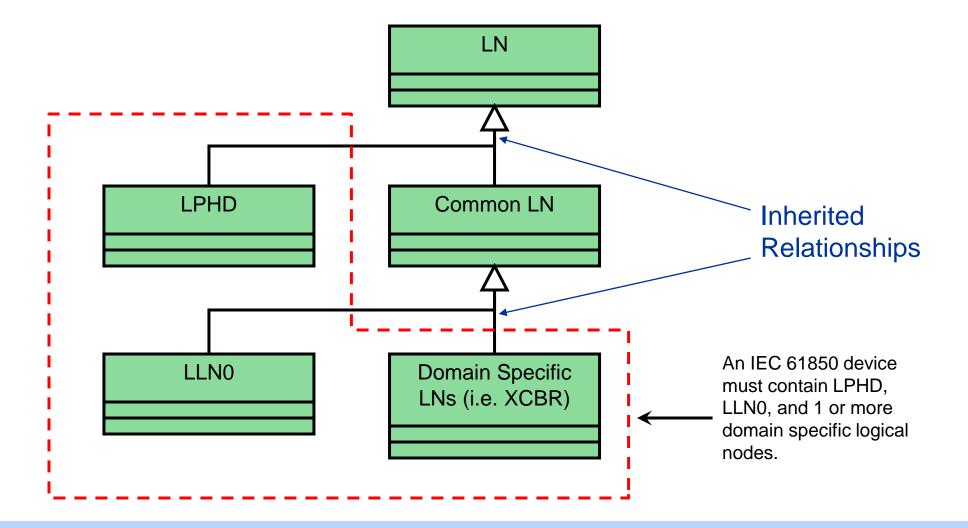
Power Transformer Logical Nodes "Y"

Name	Description
YEFN	Earth fault neutralizer
YLTC	Tap changer
YPSH	Power shunt
YPTR	Power transformer

Other Power System Equipment Logical Nodes "Z"

Name	Description
ZAXN	Auxiliary network
ZBAT	Battery
ZBSH	Bushing
ZCAB	Power cable
ZCAP	Capacitor Bank
ZCON	Converter
ZGEN	Generator
ZGIL	Gas insulated line
ZLIN	Power overhead line
ZMOT	Motor
ZREA	Reactor
ZRRC	Rotating reactive component
ZSAR	Surge arrestor
ZTCF	Thyristor controlled frequency converter
ZTCR	Thyristor controlled reactive component
ZRES	Resistor
ZSCR	Semiconductor Controlled Rectifier
ZSMC	Synchronous Machine

Logical Node Names


• Example for Circuit Breaker:

CBR01	
	Logical Node Instance #
	Logical Node Name per IEC 61850-7-4 (circuit breaker)
— Optional Applic	ation Specific Prefix

prefix digits + instance digits \leq 7 (Ed. 1) prefix digits + instance digits \leq 12 (Ed. 2)

Logical Node Classes

Physical Device - LPHD

		LPHD class		
Data object name	Common data class	Explanation	Т	M/O C
Data objects				
Status information	on	-		
PhyNam	DPL	Physical device name plate	1	М
PhyHealth	ENS	Physical device health	1	М
OutOv	SPS	Output communications buffer overflow		С
Proxy	SPS	Indicates if this LN is a proxy		М
InOv	SPS	Input communications buffer overflow		С
NumPwrUp	INS	Number of Power ups		С
WrmStr	INS	Number of Warm Starts		С
WacTrg	INS	Number of watchdog device resets detected		С
PwrUp	SPS	Power Up detected		С
PwrDn	SPS	Power Down detected		О
PwrSupAlm	SPS	External power supply alarm		О
Controls		•		
RsStat	SPC	Reset device statistics		0
Sim	SPC	Receive simulated GOOSE or simulated SV		С
	×	Common Data Class		1

Data Object Names

Mandatory/Optional/Conditional

Common Logical Node Class

		Common Logical Node class	
Attribute Name	Attr. Type	Explanation	T M/O
LNName		Shall be inherited from Logical-Node Class (see IEC 61850-7-2)	
Data		From IEC6	1850-7-4
Mandatory Logica	Node Infor	mation (Shall be inherited by ALL LN but LPHD)	
Mod	INC	Mode	м
Beh	INS	Behaviour	м
Health	INS	Health	м
NamPlt	LPL	Name plate	м
Optional Logical I	Node Inform	ation	
Loc	SPS	Local operation	o
EEHealth	INS	External equipment health	0
EEName	DPL	External equipment name plate	0
OpCntRs	INC	Operation counter resetable	0
OpCnt	INS	Operation counter	0
OpTmh	INS	Operation time	0

ALL other logical nodes contain these attributes even though they are not listed in the other logical node description tables.

SISCO

Common Logical Node – LLN0

(Logical Node Zero)

	LLNO class					
Data object name	Common data class					
Data objects						
Status information	n	-				
LocKey	SPS	Local operation for complete logical device	0			
LocSta	SPC	Switching authority at station level	0			
Loc	SPS	ocal Control Behavior				
OpTmh	INS	peration time				
Controls	÷					
Diag	SPC	Run Diagnostics	0			
LEDRs	SPC	LED reset	то			
Settings	•					
MltLev	SPG	Select mode of authority for local control (True – control from multiple levels above the selected one is allowed, False – no other control level above allowed)	0			

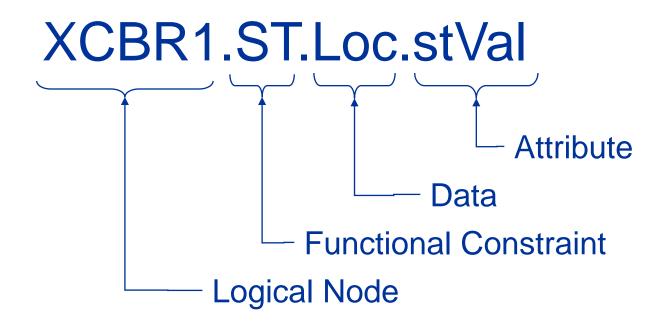
The Mode (Mod) and Local/Remote status of this logical node affects all LNs in that Logical Device

Logical Node Description – XCBR

		XCBR class		
Data object name	Common data class	Explanation		T M/C C
LNName		The name shall be composed of the class name, the LN-Prefix and Instance-ID according to IEC 61850-7-2, Clause 22.	l LN-	
Data objects	•			
LocKey	SPS	Local or remote key (local means without substation automation communication, hardwired direct control)		0
LocSta	SPC	Switching authority at station level		0
Loc	SPS	Local Control Behavior		М
EEHealth	ENS	External equipment health		0
EEName	DPL	External equipment name plate		0
OpCnt	INS	Operation counter		Μ
Controls				
Pos	DPC	Switch position		М
BlkOpn	SPC	Block opening		М
BlkCls	SPC	Block closing		М
ChaMotEna	SPC	Charger motor enabled		0
Metered values				
SumSwARs	BCR	Sum of Switched Amperes, resetable		0
Status informat	tion			
СВОрСар	INS	Circuit breaker operating capability		0
POWCap	INS	Point On Wave switching capability		0
MaxOpCap	INS	Circuit breaker operating capability when fully charged		0
Dsc	SPS	Discrepancy		0
Settings				
CBTmms	ING	Closing Time of breaker		0
		Common Data Class		
N Data	Object Nam		Man	dator

Single Point Status (SPS) CDC

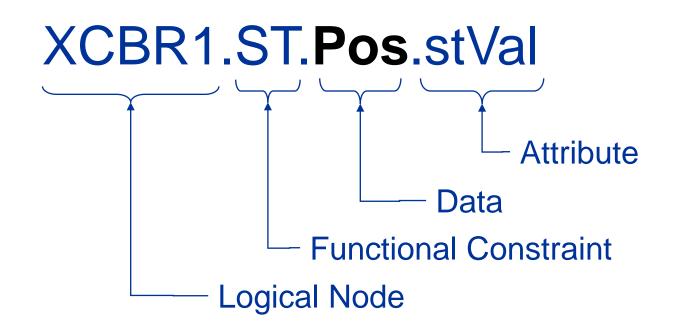
SISCO


SPS class					
Attribute Name	Attribute Type	FC	TrgOp	Value/Value Range	M/O/C
DataName	Inherited from Data Cla				
DataAttribut	ė				From IEC61850-7-3
				status	
stVal	BOOLEAN	ST	dchg	TRUE FALSE	М
q	Quality	ST	qchg		M
t	TimeStamp	ST			M
			SUL	bstitution	
subEna	BOOLEAN	SV			PICS_SUBST
subVal	BOOLEAN	SV		TRUE FALSE	PICS_SUBST
subQ	Quality	SV			PICS_SUBST
subID	VISIBLE STRING64	SV			PICS_SUBST
	50, S	configu	iration, de	scription and extension	38
d	VISIBLE STRING255	DC		Text	0
dU	UNICODE STRING255	DC			0
cdcNs	VISIBLE STRING255	EX			AC_DLNDA_M
cdcName	VISIBLE STRING255	EX			AC_DLNDA_M
dataNs	VISIBLE STRING255	EX			AC_DLN_M

Data Attribute Names

Functional Constraint

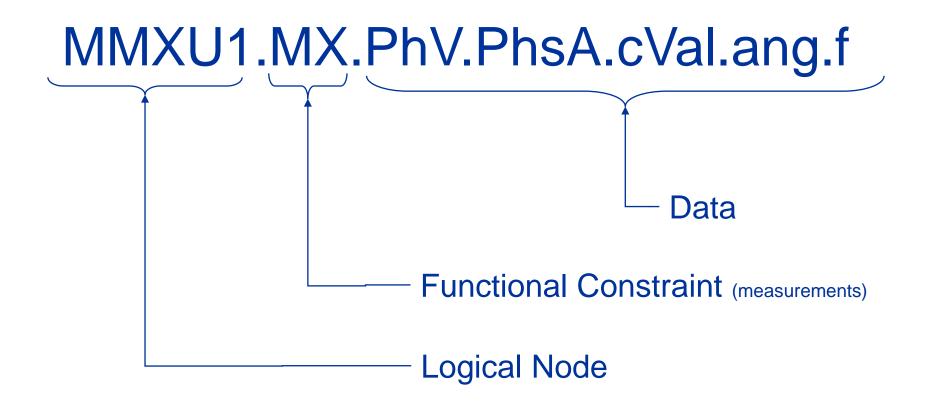
Object Name for Local/Remote Attribute of XCBR1


Mapping of Names via 8-1

- Section 8-1 maps the IEC61850 LN and Data Object Names to MMS (ISO9506)
- MMS allows only numbers, letters, "\$", and "_" in object names.
- Resulting MMS Object Name:

XCBR1\$ST\$Loc\$stVal

Object Name for Breaker Position Attribute of XCBR1



Measurement Unit (MMXU)

		MMXU class				
Data object name	Common data class	Explanation				
LNName		The name shall be composed of the class name, the LN-Prefix and LN- Instance-ID according to IEC 61850-7-2, Clause 22.				
Data objects						
EEHealth	INS	External Equipment Health (external sensor)	0			
M easured values	6					
TotW	MV	Total Active Power (Total P)	0			
TotVAr	MV	Total Reactive Power (Total Q)	0			
TotVA	MV	Total Apparent Power (Total S)	0			
TotPF	MV	Average Power factor (Total PF)	0			
Hz	MV	Frequency	0			
PPV	DEL	Phase to phase voltages (VL1VL2,)	0			
PNV	WYE	Phase to neutral voltage	0			
PhV	WYE	Phase to ground voltages (VL1ER,)	0			
A	WYE	Phase currents (IL1, IL2, IL3)	0			
W	WYE	Phase active power (P)	0			
VAr	WYE	Phase reactive power (Q)	0			
VA	WYE	Phase apparent power (S)	0			
PF	WYE	Phase power factor	0			
Z	WYE	Phase Impedance	0			

Object Name for Phase A to Ground Angle Measurement

GOOSE Subscription – LGOS

		LGOS class		
DataCommonExplanationobject namedata class		Explanation	Т	M/O/ C
LNName		The name shall be composed of the class name, the LN-Prefix and LN-Instance-ID according to IEC 61850-7-2, Clause 22		
Data objects		•		
Status information	n			
SbsNdsCom	SPS	Subscription needs commissioning		0
SbsSt	SPS	Status of the subscription (True = active, False=not active)		0
SbsSim	SPS	Subscription wih simulation		0
LastStNum	INS	Last state number received		0
ConfRevNum	INS	Expected Configuration revision number		0
Settings		•		
GoCBRef	ORG	Reference to the subscribed GOOSE control block		0

SISCO

The Standards Based Integration Company

Systems Integration Specialists Company, Inc.

ACSI

Abstract Communications Service Interface

The IEC 61850 Service Model

ACSI Abstract Communications Service Interface

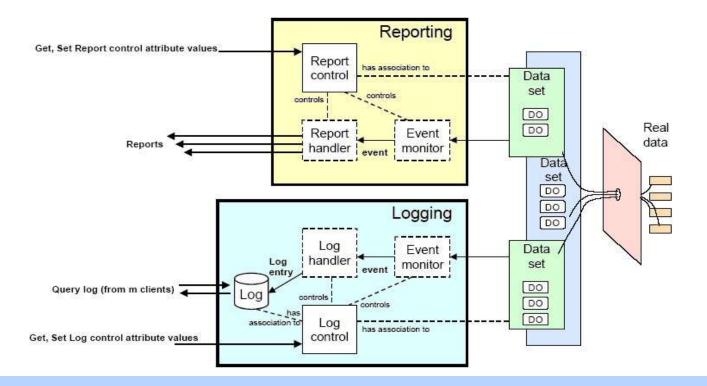
- Defines a set of Objects
- Defines a set of Services to manipulate and access those objects
- Defines a base set of data types for describing objects

ACSI Objects and MMS Mapping

ACSI Object Class	MMS Object		
SERVER class	Virtual Manufacturing Device (VMD)		
LOGICAL DEVICE class	Domain		
LOGICAL NODE class	Named Variable		
DATA class	Named Variable		
DATA-SET class	Named Variable List		
SETTING-GROUP-CONTROL-BLOCK class	Named Variable		
REPORT-CONTROL-BLOCK class	Named Variable		
LOG class	Journal		
LOG-CONTROL-BLOCK class	Named Variable		
GOOSE-CONTROL-BLOCK class	Named Variable		
GSSE-CONTROL-BLOCK class	Named Variable		
CONTROL class	Named Variable		
Files	Files		

Some ACSI Services

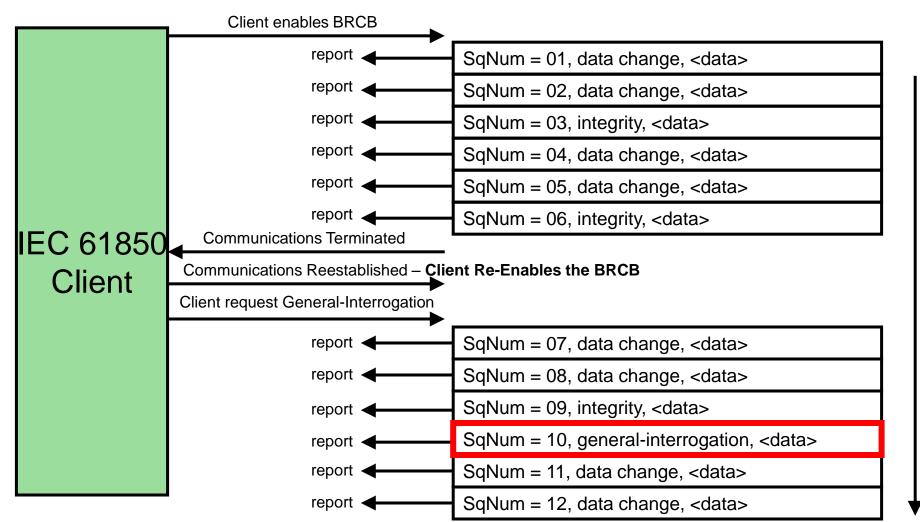
Enable Self Describing Devices


SISCO

ACSIServices	MMS Services
LogicalDeviceDirectory	GetNameList
GetAllDataValues	Read
GetDataValues	Read
SetDataValues	Write
GetDataDirectory	GetVariableAccessAttributes
GetDataDefinition	GetVariableAccessAttributes
GetDataSetValues	Read
SetDataSetValues	Write
CreateDataSet	CreateNamedVariableList
DeleteDataSet	DeleteNamedVariableList
GetDataSetDirectory	GetVariableAccessAttributes
Report (Buffered and Unbuffered)	InformationReport
GetBRCBValues/GetURCBValues	Read
SetBRCBValues/SetURCBValues	Write
GetLCBValues	Read
SetLCBValues	Write
QueryLogByTime	ReadJournal
QueryLogAfter	ReadJournal
GetLogStatus Values	GetJournalStatus
Select	Read/Write
SelectWithValue	Read/Write
Cancel	Write
Operate	Write
Command-Termination	Write

Reporting

SISCO

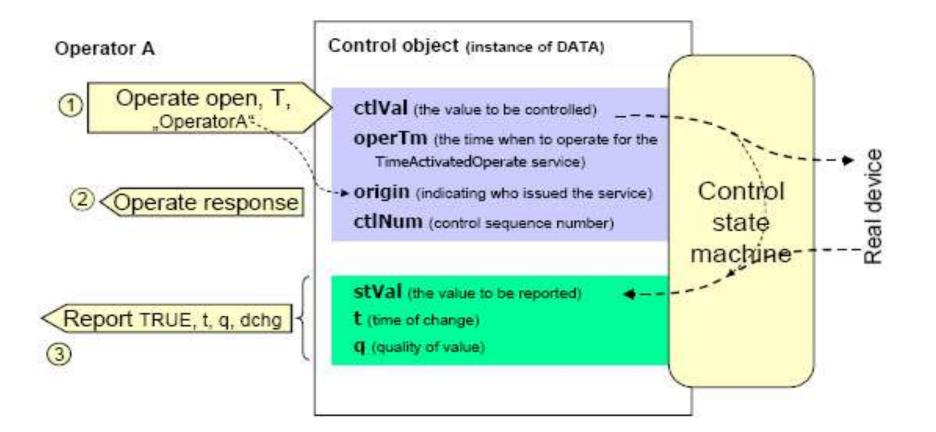

- Unbuffered Reporting allows clients to receive data from the server without polling but, if the network connection is lost between the client and server, data is lost.
- Buffered reporting enables the server to retain data if connections are lost enabling the client to retrieve ALL the data.

Buffered Report Tracking Service – BST

BTS Class							
Attribute name	Attribute type	FC	TrgOp	r/w	Value/value range	M/O/C	
Shall inherit all the data	attributes of the CST CD	Ċ					
Specific to the BTS							
rptID	VISIBLE STRING129	SR		r	Service parameter ReportIdentifier is mapped to rptID	М	
rptEna	BOOLEAN	SR		r	Service parameter ReportEnable is mapped to rptEna	М	
datSet	ObjectReference	SR		r	Service parameter DatSetReference is mapped to datSet	М	
confRev	INT32U	SR		r	Service parameter ConfigurationRevision is mapped to confRev	М	
optFlds	PACKED_LIST	SR		r	Service parameter OptionalFields is mapped to optFlds	М	
bufTm	INT32U	SR		r	Service parameter BufferTime is mapped to bufTm	М	
sqNum	INT32U	SR		r	Attribute SqNum of BRCB is mapped to sqNum	М	
trgOps	TriggerConditions	SR		r	Service parameter TriggerOptionsEnabled is mapped to trgOps	М	
intgPd	INT32U	SR		r	Service parameter IntegrityPeriod is mapped to intgPd	М	
gi	BOOLEAN	SR		r	Service parameter GeneralInterrogation is mapped to go	М	
purgeBuf	BOOLEAN	SR		r	Service parameter PurgeBuf is mapped to purgeBuf	М	
entryID	EntryID	SR		r	Service parameter Entryldentifier is mapped to entryID	М	
timeOfEntry	EntryTime	SR		r	Service parameter TimeOfEntry is mapped to timeOfEntry	М	
resvTms	INT16	SR		r	Service parameter ReserveTimeSecond is mapped to resvTms	0	

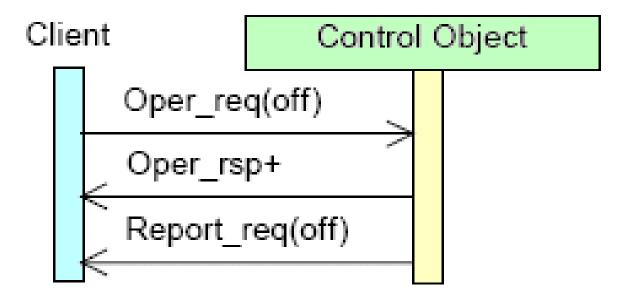
Buffered Reporting with GI Example

SqNum = 10 flags when the GI was issued by the client to identify data that was reported while disconnected.

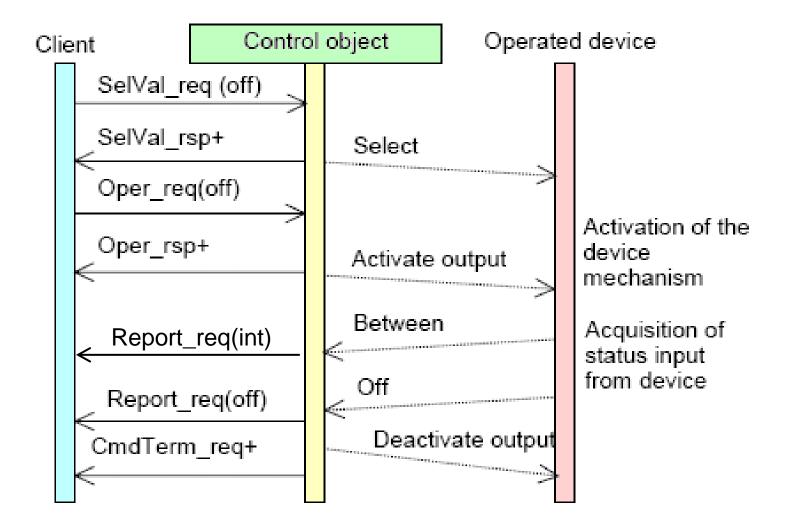

time

SISCO

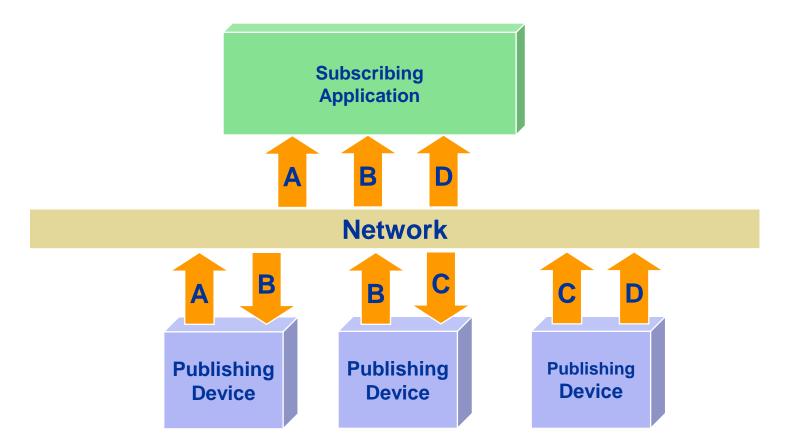
Using Modeling to Control Reports


- Requirements:
 - Desire to receive average readings of current measurements on all 3 phases of a feeder and the actual voltage measurement on one phase every 10 minutes.
 - Any under or over voltage or current conditions should be reported immediately.
- Use MSTA for average current measurements
- Use MMXU for actual voltage measurement and range alarms
- Careful selection of attributes (instMag versus mag) and range alarms enable these complex requirements to be handled via client interaction with server.

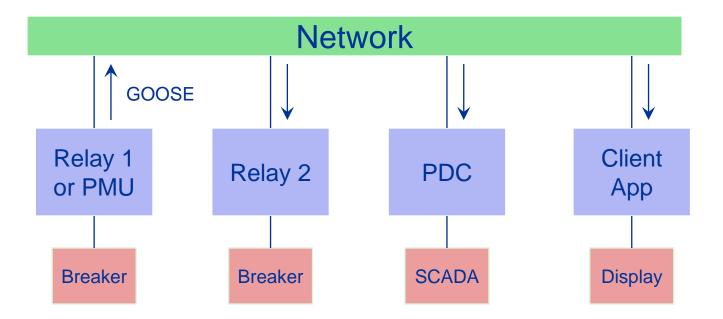
General Control Model



Direct Control with Normal Security

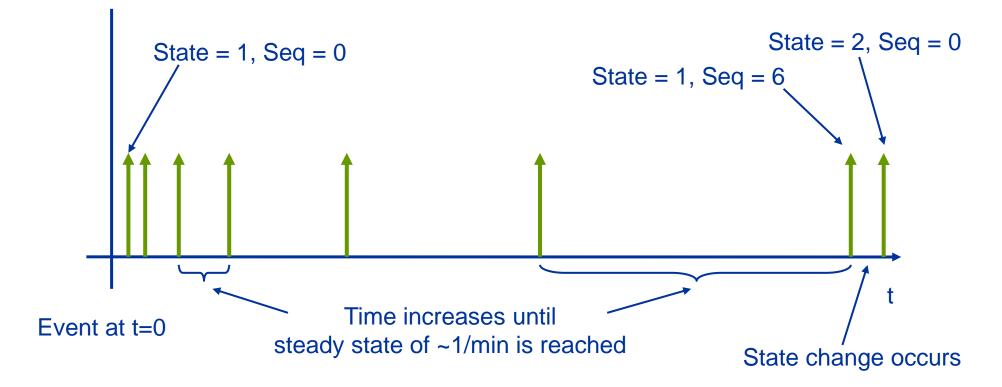

SBO Control with Enhanced Security

SISCO


GOOSE Messaging

Applications "subscribe" by listening for data **sent** to a given multi-cast **destination** address

IEC61850 Network Architecture


GOOSE - Generic Object Oriented Substation Event (sends data sets)

GOOSE Message

Name	Туре	
gocbRef	GOOSE Control Block	
timeAllowedtoLive	How long to wait for next message (ms)	
datSet	The name of the data set being sent	
golD	ID of the sending GOOSE application (gocbRef)	
Т	Time of state change	
stNum	State Number	
sqNum	Sequence Number	
Simulation	Simulated Data (true/false)	
confRev	Configuration Revision of the GOOSE Control Block (dataset config)	
ndsCom	Needs Commissioning (true/false)	
numDatSetEntries	Number of data set entries in the message	
Data	The data values of the data set in sequence.	
Binary encoding of above data		
Ethernet Multicast Address Using 802.3 Ethertype or 90-5 for IP Multicast		

GOOSE is reliable multicast

Each line below represents a GOOSE message

Sampled Value Messaging

- Unlike GOOSE Messaging, which is event based, SV messaging is stream based
 - Each message contains one or more samples of data taken at a specified sample rate
 - Messages are sent constantly at a sufficient rate to communicate all the samples.

Sampled Value Message

Name	Туре	
MsvCBRef	Multicast Sampled Value Control Block	
DatSet	The name of the data set being sent	
MsvID	System wide unique ID of the sending application	
SmpCnt	The number of samples in the message	
RefrTm	Time of the first sample	
ConfRev	Configuration Revision of the MSV Control Block (dataset config)	
SmpSynch	Samples are time are time synchronized (true/false)	
SmpRate	Sample Rate	
SmpMod	Sample Mode: samples/period, samples/second, seconds/sample	
Simulation	Simulated data (true/false)	
Sample [1n]	The sequence of samples (one data set per sample)	
Binary encoding of above data		
Ethernet Multicast Address Using 802.3 Ethertype or 90-5 for IP Multicast		

The Standards Based Integration Company

Systems Integration Specialists Company, Inc.

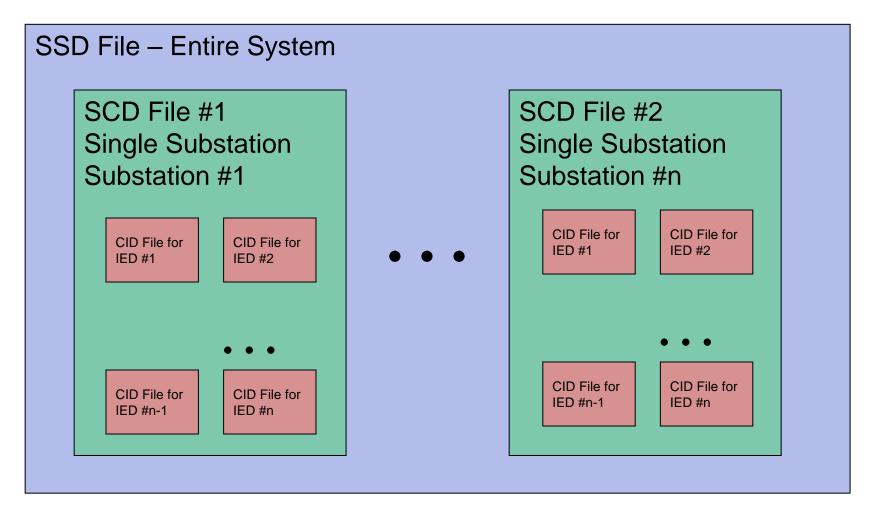
Substation Configuration Language

SCL IEC 61850-6

SCL – Substation Configuration Language IEC61850-6

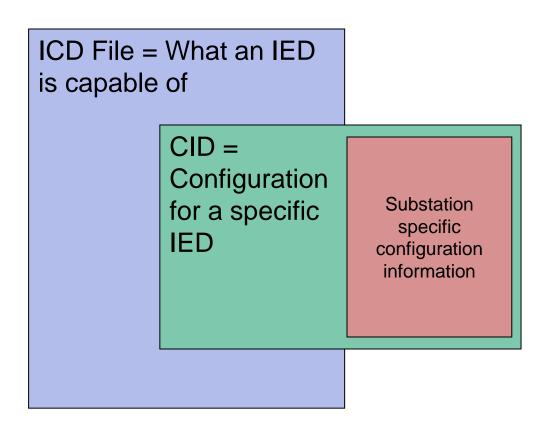
 Description language for communication in electrical substations related to the IEDs.

- XML based language that allows a formal description of
 - Substation automation system and the switchyard and the relation between them
 - IED configuration
 - Support for private extensions


Basic Substation Config. Language (SCL) File Types

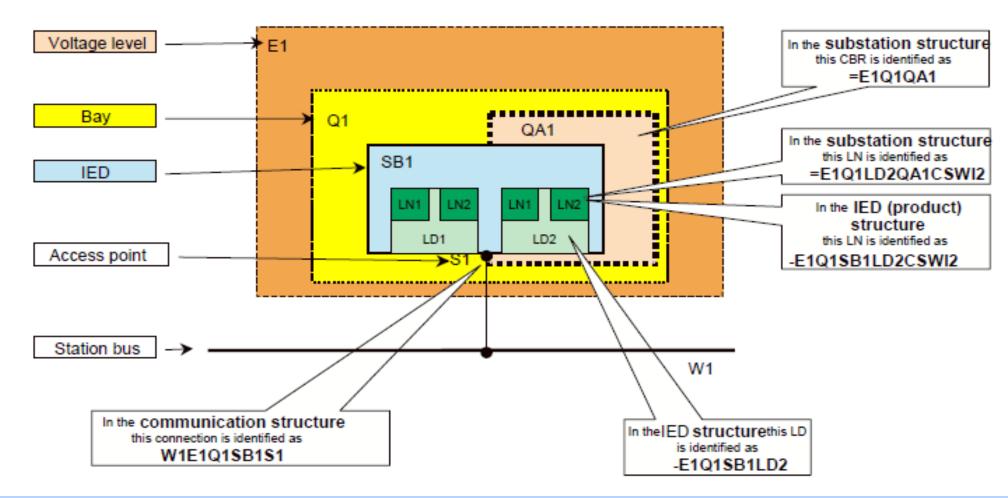
• SSD: System Specification Description.

- XML description of the entire system
- SCD: Substation Configuration Description.
 - XML description of a single substation.
- CID: Configured IED Description.
 - XML configuration for a specific IED.
- ICD: IED Capability Description.
 - Description of what is supported by an IED (required for servers).

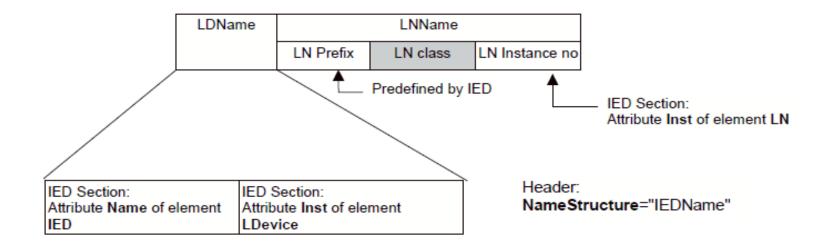


How SCL Files Work Together

ICD versus CID Files



- CID File = Subset of ICD File Actually Used + Substation Specific Configuration Info.
- Subset:
 - Not all logical nodes, control blocks, I/O, etc. supported by the device are used in a system.
- Substation Configuration Info:
 - Report control block presets
 - Static values for location, and other descriptions.


ICD – IED Capability Description CID – Configured IED Description

SCL Driven Naming

Logical Device and LN Naming = IEDName

Example of SCL

<?xml version="1.0" encoding="UTF-8" ?> <SCL xmlns="http://www.iec.ch/61850/2003/SCL" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.iec.ch/61850/2003/SCL SCL.xsd"> <Header id="SISCO_DEMO_IED" version="1" revision="2" tooIID="WordPad" nameStructure="IEDName"/> <Communication> <SubNetwork name="StationBus1" type="8-MMS"> <Text/> <BitRate unit="b/s">100</BitRate> <ConnectedAP iedName="SISCO IED " apName="AXS4MMS IED"> <Address> <P type="IP">192.168.0.194</P> <P type="IP-SUBNET">255.255.255.0</P> <P type="OSI-TSEL">0001</P> <P type="OSI-SSEL">0001</P> <P type="OSI-PSEL">00000010</P> </Address> <GSE IdInst="CTRL" cbName="ControlDataSet1"> <Address> <P type="MAC-Address">01-0C-CD-01-F1-04</P> <P type="APPID">0000</P> <P type="VLAN-ID">1</P> <P type="VLAN-PRIORITY">4</P> </Address> </GSE>

SCL Applications

- For users to specify IED requirements.
- For vendors to specify IED capabilities.
- Configure IEC61850 clients w/o IEDs.
- Extract IED configuration from power system design tools.
- Export IED configuration to power system design tools and other applications.

Questions - Discussion

The Standards Based Integration Company

Systems Integration Specialists Company, Inc.

Thank You

Ralph Mackiewicz SISCO, Inc. 6605 19½ Mile Road Sterling Heights, MI 48314-1408 USA Tel: +1-586-254-0020 x103 Fax: +1-586-254-0053 Email: ralph@sisconet.com

