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Frequency trending away from nominal 
requires tools capturing real-time dynamics  

Dynamic state estimation vs. traditional static state estimation 
Dynamic security assessment  
Dynamic model validation 

(all identified as killer apps in NASPI phasor roadmap, 
https://www.naspi.org/Badger/content/File/FileService.aspx?fileID=539) 
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https://www.naspi.org/Badger/content/File/FileService.aspx?fileID=539


Dynamic paradigm for grid operation and 
planning  

National Driver: clean and efficient power grid as well as being 
affordable, reliable, and secure  dynamic and fast 
Technical Approach: combine model prediction and measurement 
observations to determine where the grid is, where the grid is going, 
and where the grid could be (what-ifs).  
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Look-ahead dynamic simulation 

1 min 

Dynamic security assessment  

Dynamic state estimation  

Better Reliability 
    

Clean Energy 
Integration 
 

Better Asset 
Utilization 

Require good dynamic models 



Phasor measurement offers great 
opportunities for capturing dynamics  

Time-synchronized, high-speed measurement at 30 samples per 
second, able to capture the majority of grid dynamics 
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NASPI: www.naspi.org  

http://www.naspi.org/


General formulation of dynamic state 
estimation   

Two-step process  
Prediction through model simulation  
Correction using real-time phasor measurement  

Mathematical algorithms: Extended Kalman Filter, Unscented Kalman 
Filter, Ensemble Kalman Filter, Particle Filter, …  
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x(k-1) 

z(k) 

x(k) x’(k) “Correction” 
Measurement Eq’s 

z = h(x,α) +ε 

R 

“Prediction” 
Dynamic Simulation 

dx/dt = f(x,α) +ν 

Q 

Prediction 
Cycle 
milliseconds 

Correction Cycle 
~1/30 second 
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Performance evaluation – estimation 
accuracy (Ensemble Kalman Filter)  

Excellent tracking with realistic evaluation conditions 
3% measurement noise; 40 ms measurement cycle (phasor measurement)  
5 ms interpolation cycle; modeling errors considered; unknown inputs; 
unknown initial states 
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Blue/green tracking red is the goal 



Performance evaluation – computational 
speed (Ensemble Kalman Filter)  

Current codes scale to ~1,000 cores 
Current computational performance meets the real-time requirement 
for regional systems  
Challenge: real-time performance for interconnection-scale systems.  
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Performance evaluation – impact of non-
Gaussian noises (Ensemble Kalman Filter)  

Non-Gaussian noise discovered in phasor measurements.  
Such non-Gaussian noises could result in large estimation errors.  
Challenge: new methods to accommodate non-Gaussian noises.  
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Error for Gaussian noise
Error for Non-Gaussian noise
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Filtering technology comparison for 
dynamic state estimation   
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  Extended 
Kalman Filter 

Unscented 
Kalman Filter 

Ensemble 
Kalman Filter Particle Filter 

Accuracy 
The 2nd best 

with 0% 
diverged 

33% diverged The best with 
0% diverged 

20% diverged 
(PF 2000) 

Efficacy of 
interpolation High High Low High 

Number of samples 
needed None Small Medium  Large 

Sensitivity to missing 
data Low Low Low Low 

Sensitivity to outliers Low Low Medium High 

Computation time 
(non-parallel) Shortest Same order 

as EKF 
longer than 

EKF 
Same order 

as EnKF  



Extending the formulation for dynamic model 
validation and calibration  

Treating parameters as augmented states 
dα/dt = g(x,α) = 0 

Dynamic states and parameters are estimated simultaneously, 
suitable for real-time applications   
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Measurement Eq’s 

z = h(x,α) +ε 
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“Prediction” 
Dynamic Simulation 

dx/dt = f(x,α) +ν 
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Prediction 
Cycle 
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Correction Cycle 
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dα/dt = g(x,α) 
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Calibration of Generator Dynamic Model 
(Data from August 18 2002, 1500 MW Navajo units drop) 

Before calibration: Significant mismatch between simulation and 
measurement 
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Calibration of Generator Dynamic Model 
(Data from August 18 2002, 1500 MW Navajo units drop) 

After calibration: model and measurement match.  
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Multi-Event Model Verification: good match 
across multiple events after calibration  
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Event 2:Verification (July 28 2003, 1252 MW Palo Verde #3 trip and 1500 MW of other generation loss) 
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Summary  

Capturing dynamics is necessary because the power grid is trending 
to be more dynamic (frequency deviates from nominal more often with 
larger amplitude).   
A dynamic paradigm is proposed to capture emerging dynamics and 
understand where the grid is, where the grid is going, and where the 
grid could be (what-ifs).  
Phasor measurements offer opportunities for implementation with 
Kalman filters. 

Great performance for dynamic state estimation and dynamic model 
validation, ready for pilot testing and adoption.  

Challenges remain in real-time computational performance and non-
Gaussian noise impact.  
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Questions? 
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