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Frequency trending away from nominal pacic Nor kil
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requires tools capturing real-time dynamics

» Dynamic state estimation vs. traditional static state estimation
» Dynamic security assessment

» Dynamic model validation

(all identified as killer apps in NASPI phasor roadmap,
https://www.naspi.org/Badger/content/File/FileService.aspx?filelD=539)
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» National Driver: clean and efficient power grid as well as being
affordable, reliable, and secure =» dynamic and fast

» Technical Approach: combine model prediction and measurement
observations to determine where the grid is, where the grid is going,
and where the grid could be (what-ifs).

Require good dynamic models
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Phasor measurement offers great 7
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opportunities for capturing dynamics

» Time-synchronized, high-speed measurement at 30 samples per
second, able to capture the majority of grid dynamics

B Phasor Measurement Units and Synchrophasor
1““\ Data Flows in the North American Power Grid

NASPI: www.naspi.org

Legend

@ PMU Locations

¢ Transmission Owner Dala Concentrator
Y Regional Data Concentrator

/ data up to reliability coordinator

/ data between reliability coordinators
/" peer to peer data exchange

With information svadsble as of March 25, 2014
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General formulation of dynamic state

estimation

» Two-step process

B Prediction through model simulation
B Correction using real-time phasor measurement

» Mathematical algorithms: Extended Kalman Filter, Unscented Kalman
Filter, Ensemble Kalman Filter, Particle Filter, ...
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Performance evaluation — estimation ractne e B
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accuracy (Ensemble Kalman Filter)

» Excellent tracking with realistic evaluation conditions
B 3% measurement noise; 40 ms measurement cycle (phasor measurement)

B 5 ms interpolation cycle; modeling errors considered; unknown inputs;
unknown initial states
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Performance evaluation — computational e e
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speed (Ensemble Kalman Filter)

» Current codes scale to ~1,000 cores

» Current computational performance meets the real-time requirement
for regional systems

» Challenge: real-time performance for interconnection-scale systems.

Computational time per estimation step
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Performance evaluation — impact of non- reciic i
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Gaussian noises (Ensemble Kalman Filter)

» Non-Gaussian noise discovered in phasor measurements.
» Such non-Gaussian noises could result in large estimation errors.
» Challenge: new methods to accommodate non-Gaussian noises.
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Extended Unscented Ensemble Particle Filter
Kalman Filter | Kalman Filter | Kalman Filter

The 2" best
Accurac v(\e/ith O;S 339% diverged The best with 20% diverged
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Sensitivity to missing Low Low Low Low
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Sensitivity to outliers Low Low Medium High
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Extending the formulation for dynamic model  racitic Northwest
validation and calibration

» Treating parameters as augmented states
B da/dt = g(x,a) =0
» Dynamic states and parameters are estimated simultaneously,
suitable for real-time applications

;e

X (k-1) qr(k-1) “prediction” |Xx ®),a’K| “Correction” x &), alk)
Dynamic Simulation ﬁ Measurement Eq’s
dx/dt = f(x,at) +v z = h(x,a) +¢
da/dt = glx.a Prediction
/ g( ’ ) Cycle Correction Cycle

milliseconds ~1/30 second

10



7

Calibration of Generator Dynamic Model Pacific Northwest
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» Before calibration: Significant mismatch between simulation and

measurement
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Calibration of Generator Dynamic Model Pacific Northwest
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» After calibration: model and measurement match.
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Multi-Event Model Verification: good match il
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across multiple events after calibration
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» Capturing dynamics is necessary because the power grid is trending
to be more dynamic (frequency deviates from nominal more often with
larger amplitude).

» A dynamic paradigm is proposed to capture emerging dynamics and
understand where the grid is, where the grid Is going, and where the
grid could be (what-ifs).

» Phasor measurements offer opportunities for implementation with
Kalman filters.

B Great performance for dynamic state estimation and dynamic model
validation, ready for pilot testing and adoption.

» Challenges remain in real-time computational performance and non-
Gaussian noise impact.
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